Emulation of gravity wave parameterisation in weather forecasting

Matthew Chantry¹, Sam Hatfield² Peter Düben², Tim Palmer¹ ¹University of Oxford, ²ECMWF

What are parameterisation schemes?

- One of many kernels of a weather or climate model.
- Each scheme captures an aspect of unresolved physics.
- Assumptions/approximations/observations are used to create closed schemes.
- Act on vertical column of data, produce an increment for variables in the column.

Our questions

- Can we emulate parameterisation schemes with neural networks?
- Are the emulators cheaper than the originals?
- Can this help with data assimilation?
- Do lessons transfer between schemes? e.g. types of networks, normalisation methods etc

Which schemes?

gravity waves

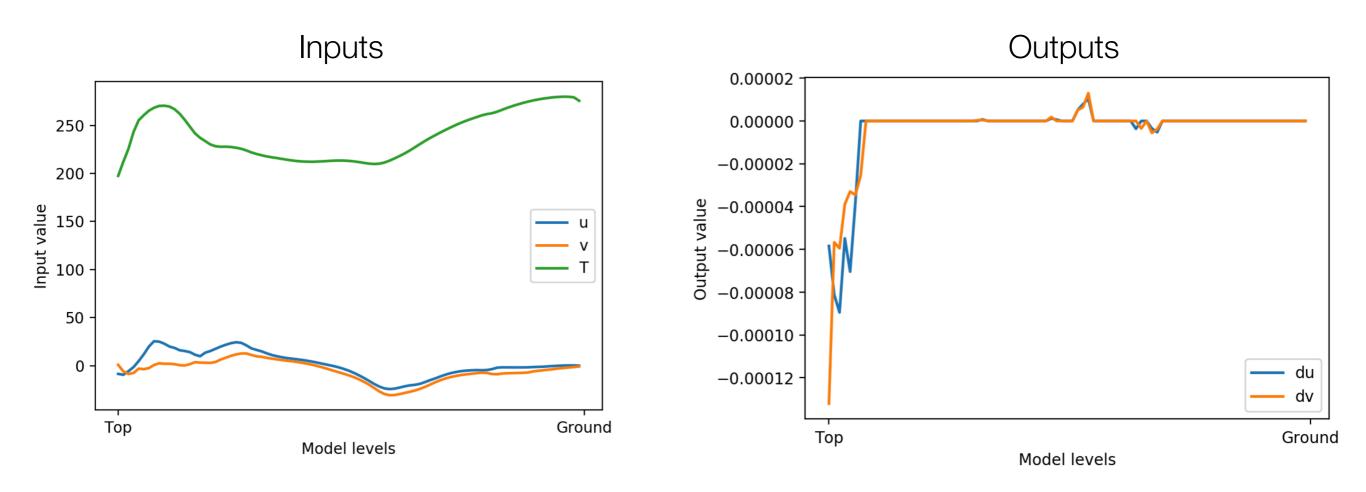
convection, fronts etc.

- Schemes with IFS code.
- Orographic and non-orographic gravity wave drag.
- Captures the impact of unresolved gravity waves on resolved scales.
- Take u, v ,T and description of the model levels, produce increments for u, v, T. (Additional variables for orography).
- Why? Simple schemes, capturing similar processes but with key differences (see later)

Data

- Simulate 2 years in IFS (TCo399 ~18km grid).
- 2,355,840 data pairs per month (every 5hrs).
- Train with one year, test with another.

Data



How we normalise will affect both the ability to learn and what features of the data to learn

Data: Less is more?

- Naive data:

Input: u, v, T, pressure, half-level pressure, geopotential at all 91 vertical levels = 546 input variables

Output: Increments du, dv = 182 outputs

- A bit of human learning/knowledge.
- Reduced data:

Input: 3 variables x 63 levels + level data ~ 190

Output: 2 variables x 63 levels = 126

Proof in the pudding. Converges to better model with fewer inputs.

NN design choices

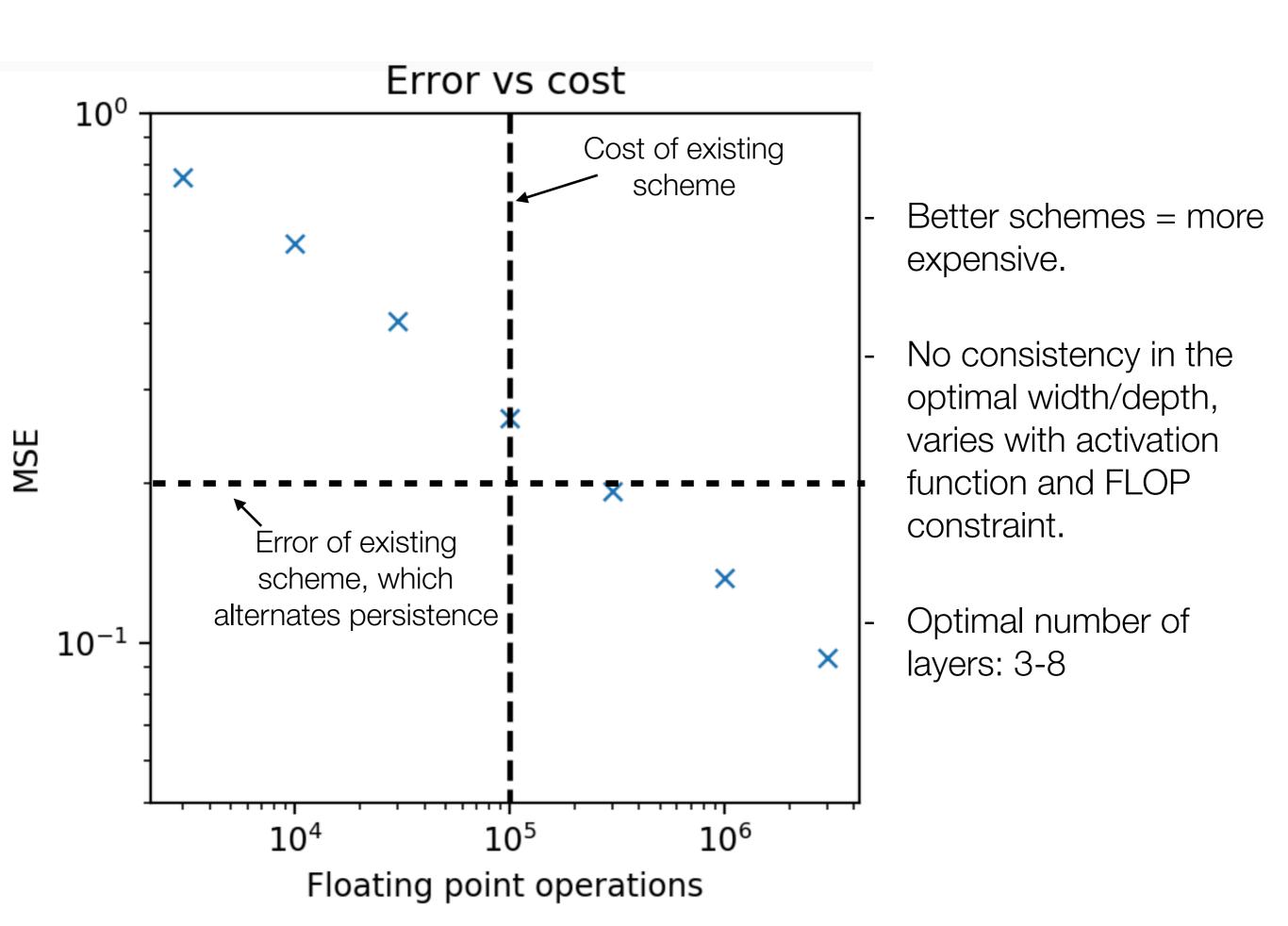
- Focus on fixed-width, fully connected networks (more later).
 - Network has no a-priori knowledge that neighbours in vectors are neighbours in vertical level space.
- Search over width, depth, activation function, learning rate etc.
- Calculate FLOP cost and compare performance of equal cost NN.

Physics constrained networks

- For the non-orographic gravity wave drag scheme, the tendency produced has no net momentum.

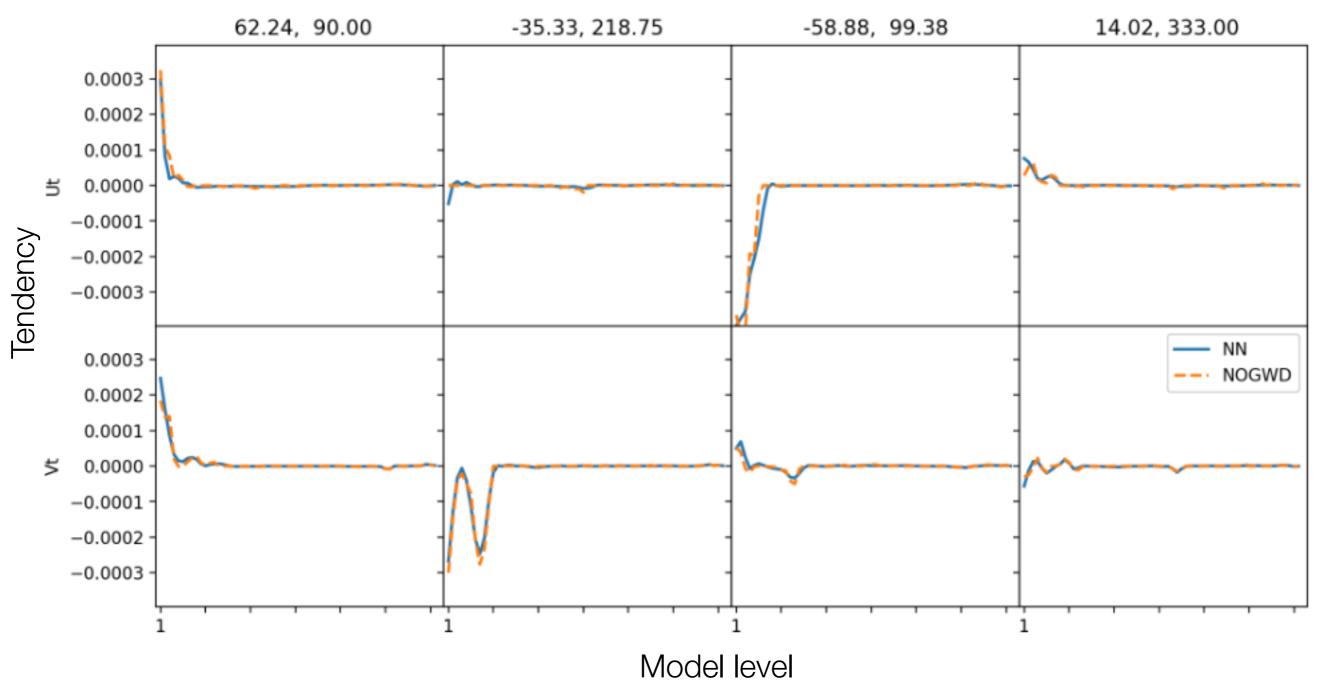
- i.e.
$$\int_{ground}^{top} u dp = 0$$

- In the current scheme this is achieved by dumping any net momentum on the highest vertical layer.
- For our networks we mimic this and train on (n-1) layers and put remaining momentum on top layer.
- This is similar to constrained architecture from Beucler et al.

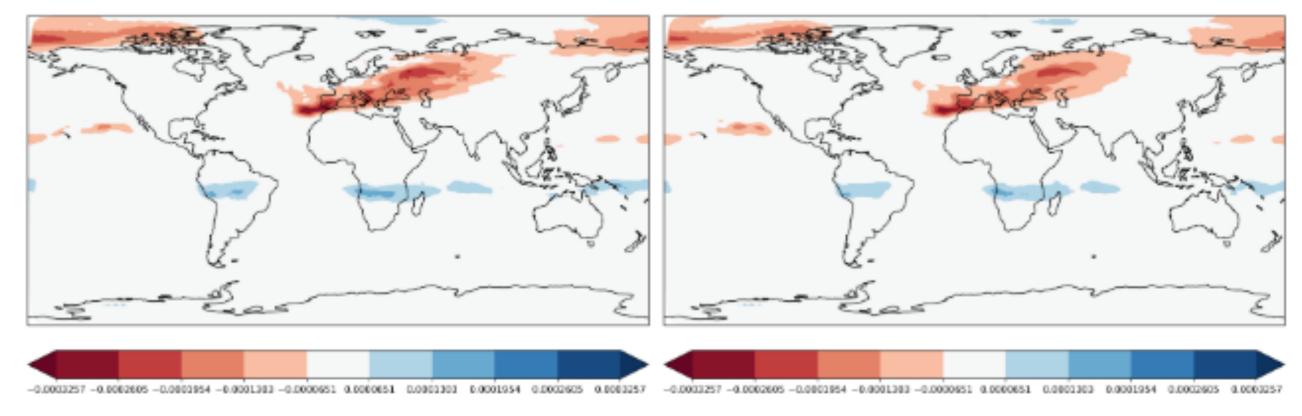


Results

4 random grid points from unseen dataset



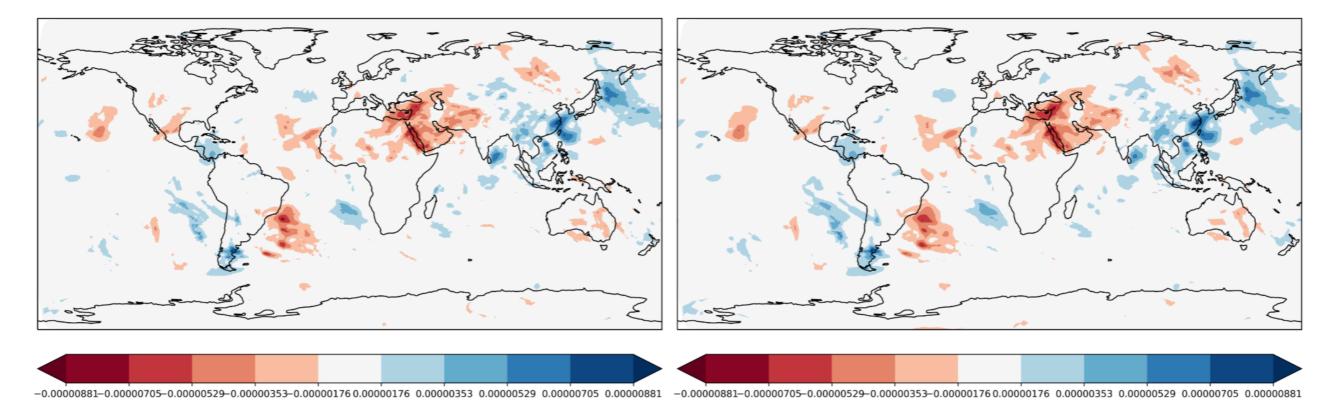
NN



Current scheme

Instantaneous v-tendency @ 20hPa

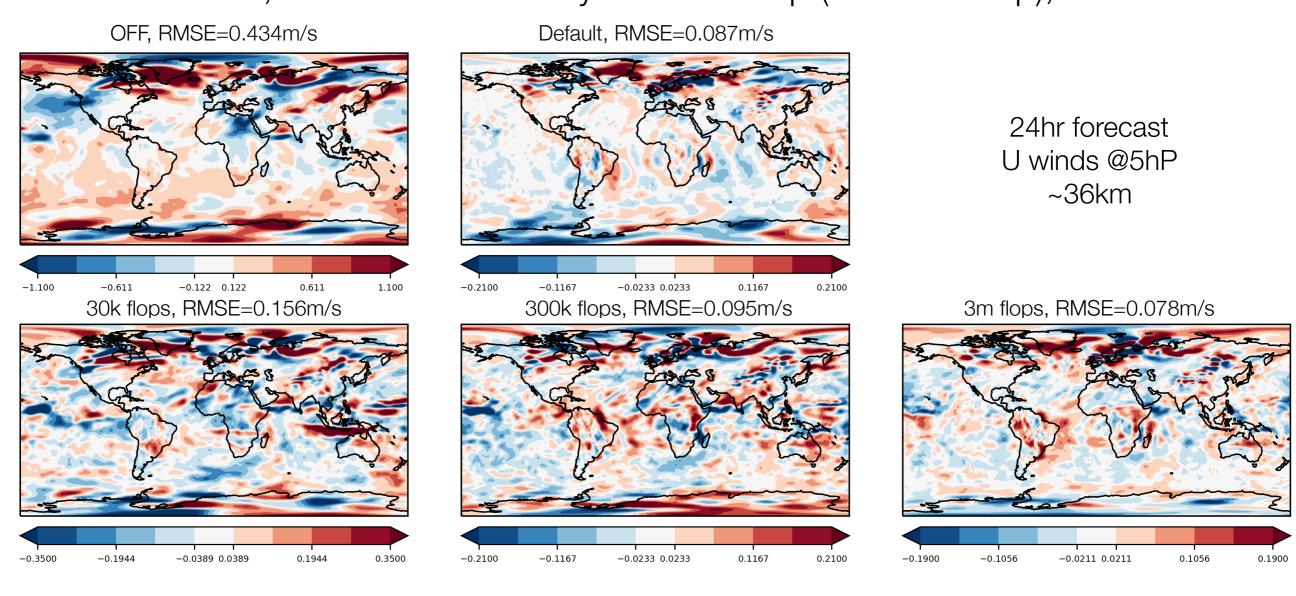
NN



Coupled mode

- Existing scheme replaced with NN inside IFS.
- Compare existing scheme run every timestep with:

 Scheme OFF, Scheme rerun every 2nd timestep (current setup), 3 NNs.

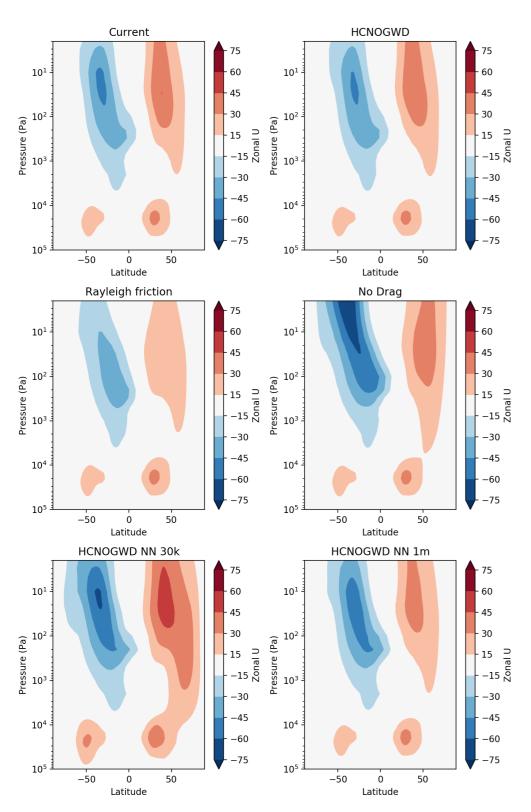


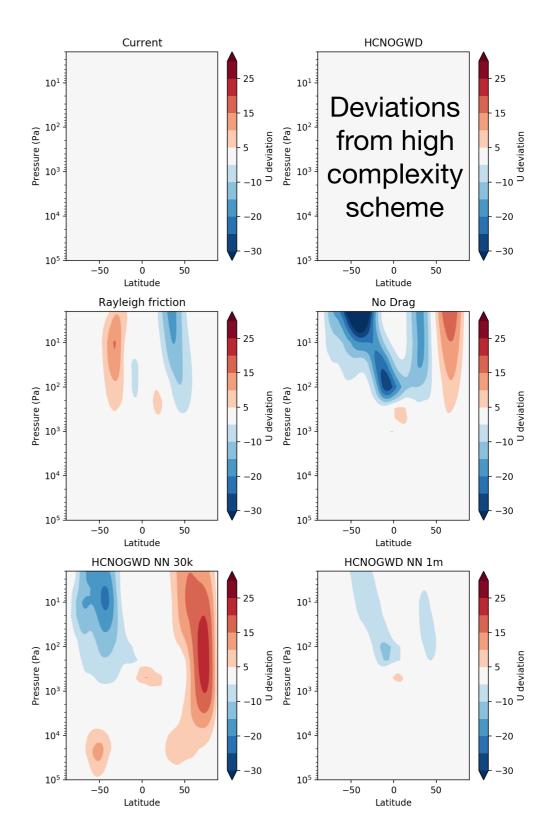
Marginal difference between schemes of dramatically varying cost.

What about longer integrations?

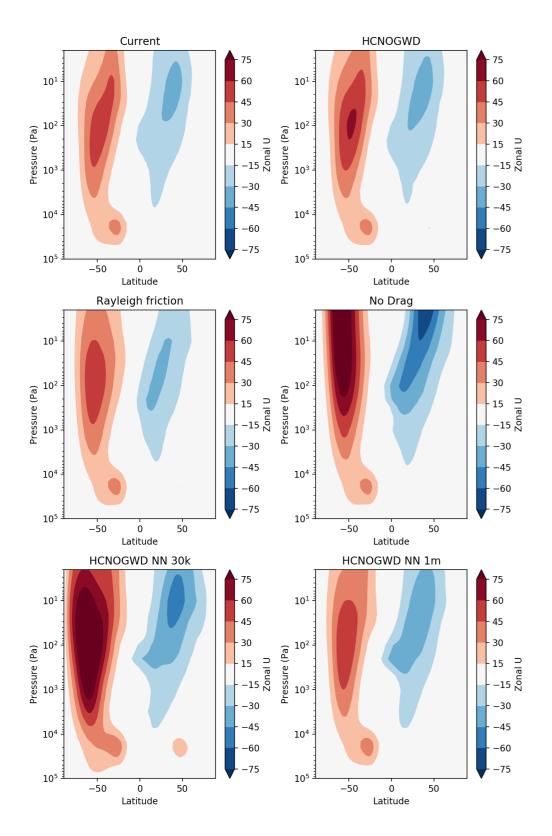
- Run for year long simulations each starting from 1-Nov, for 6 years.
- First models crash!
- Our physics-constrained network is unstable, the highest layers are densely packed in pressure, so small errors in lower atmosphere result in large tendencies at the top layer.
- Long-term: retrain including top layer in loss (i.e. Beucler et al.)
 For now: predict entire column, small errors in momentum conservation.
- Examine zonal structure of the atmosphere.

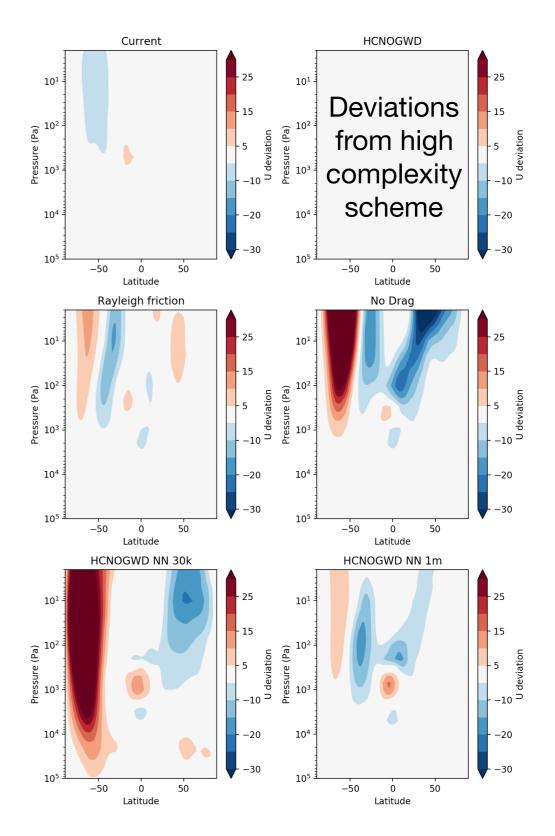
DJF Zonal velocities



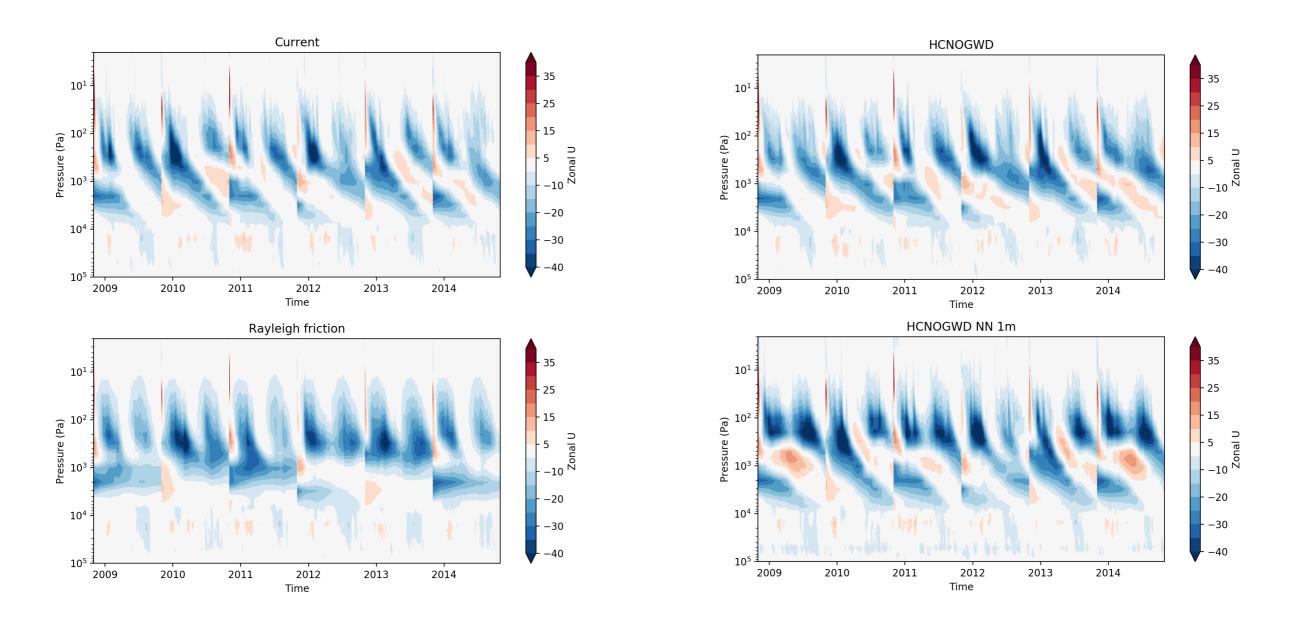


JJA Zonal velocities



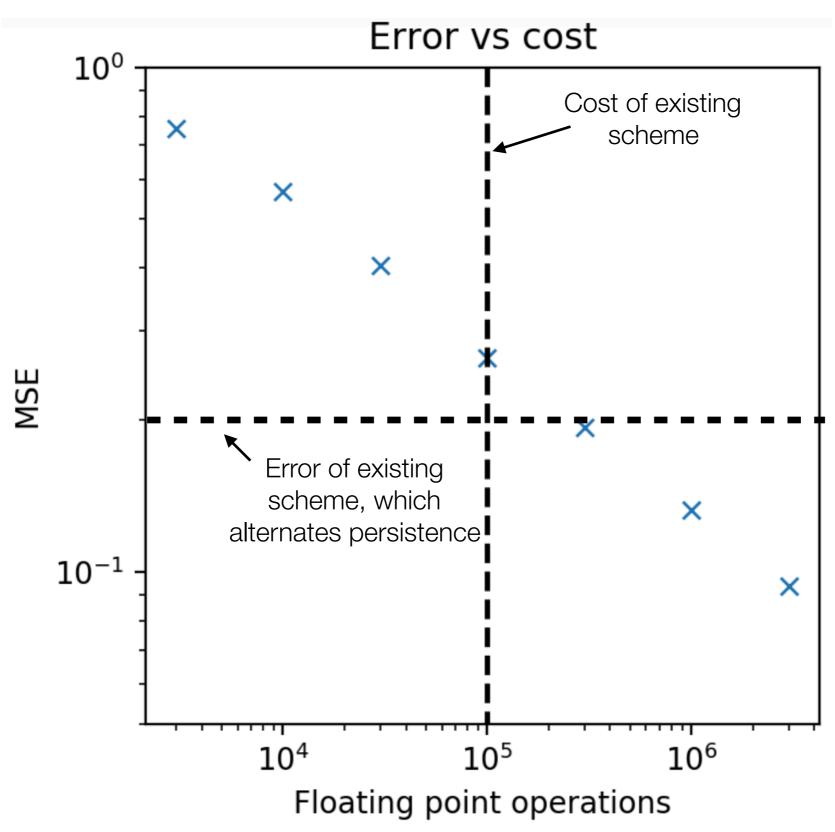


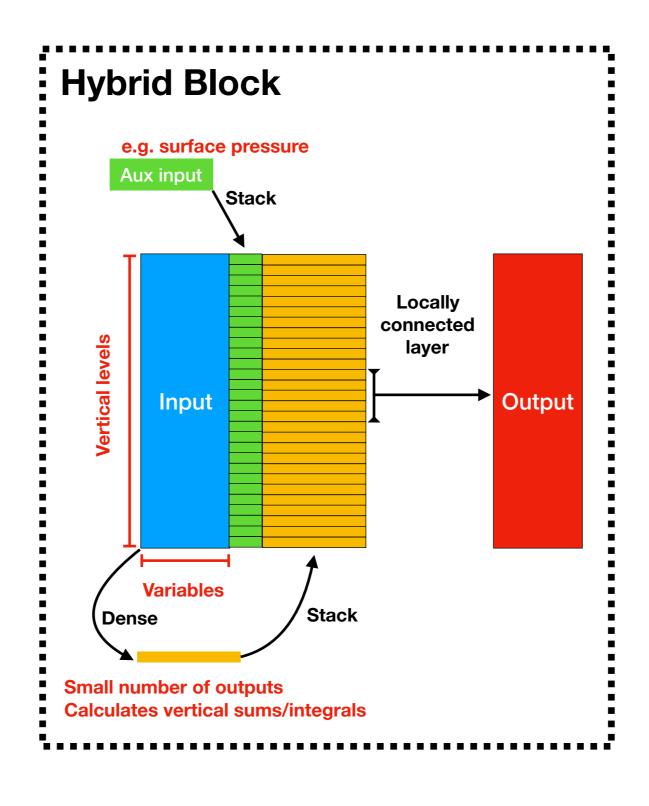
Quasi-biennial oscillation

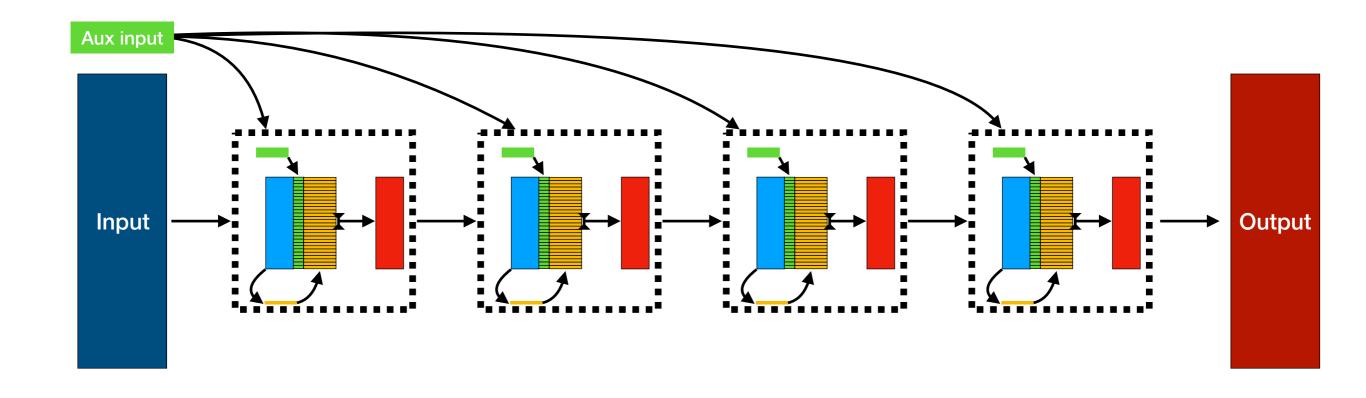


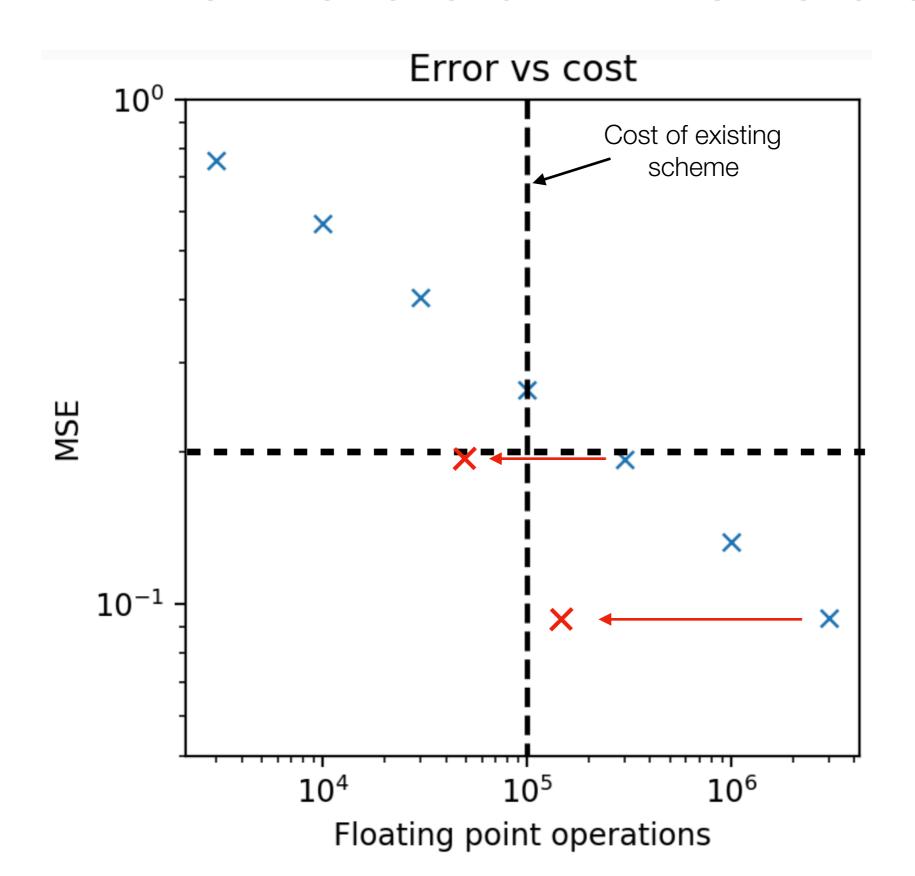
Jet averaged over [-10,10] Jet slightly too strong in NN but captures decent (unlike Rayleigh friction)

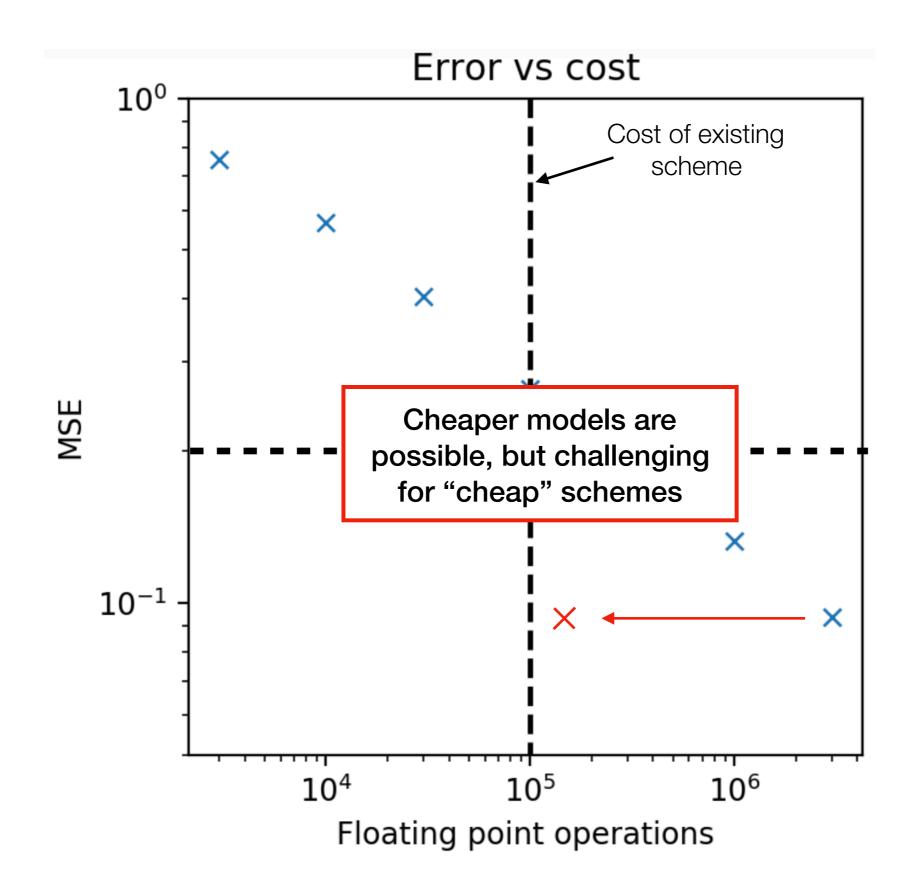
but Matthew...



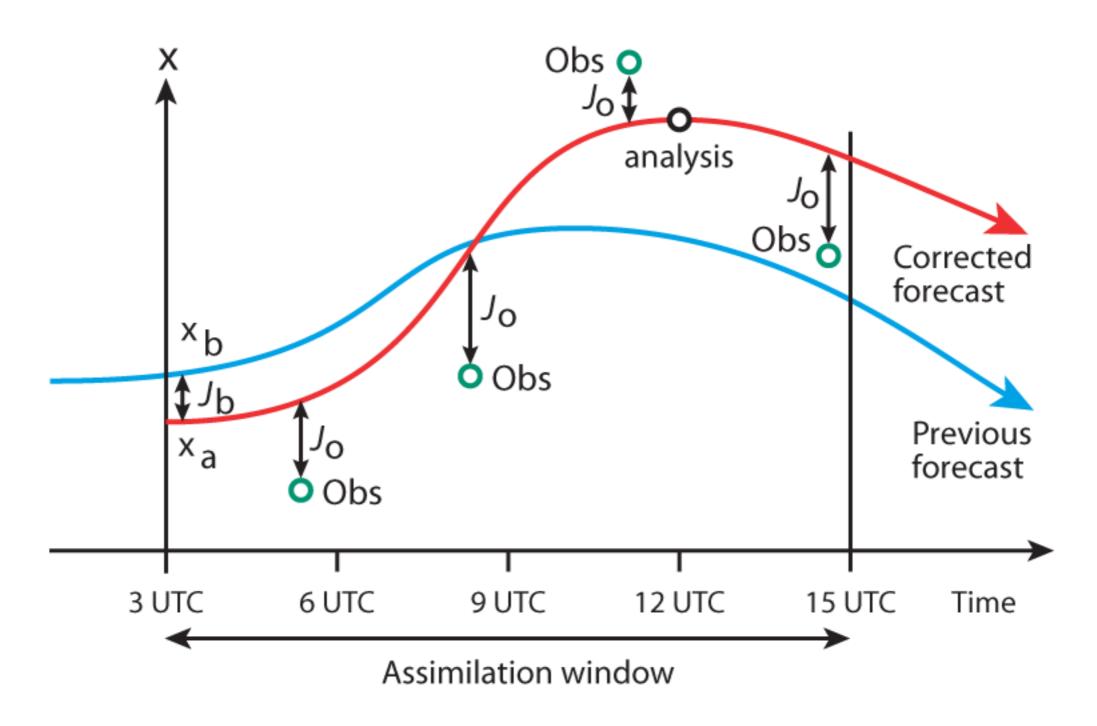






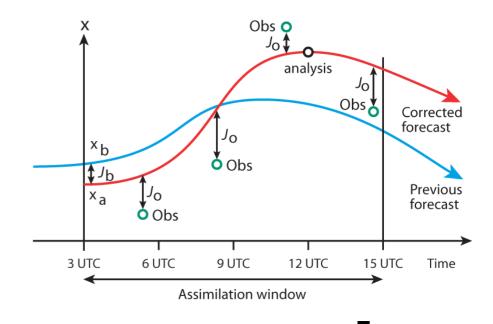


Data assimilation



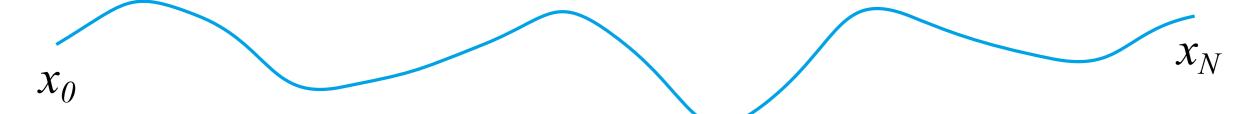
Credit: ECMWF

4D-var approach

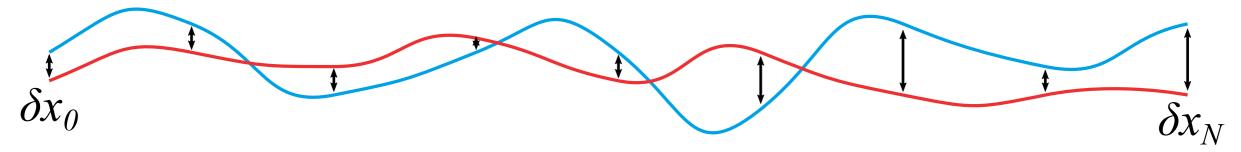


assimilation window

nonlinear model



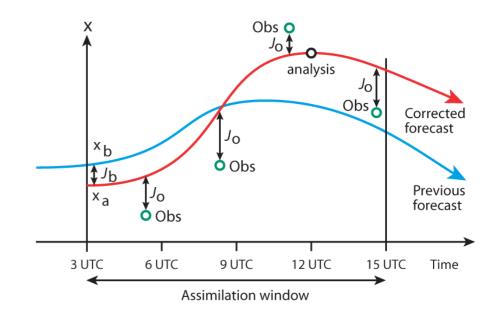
tangent-linear model

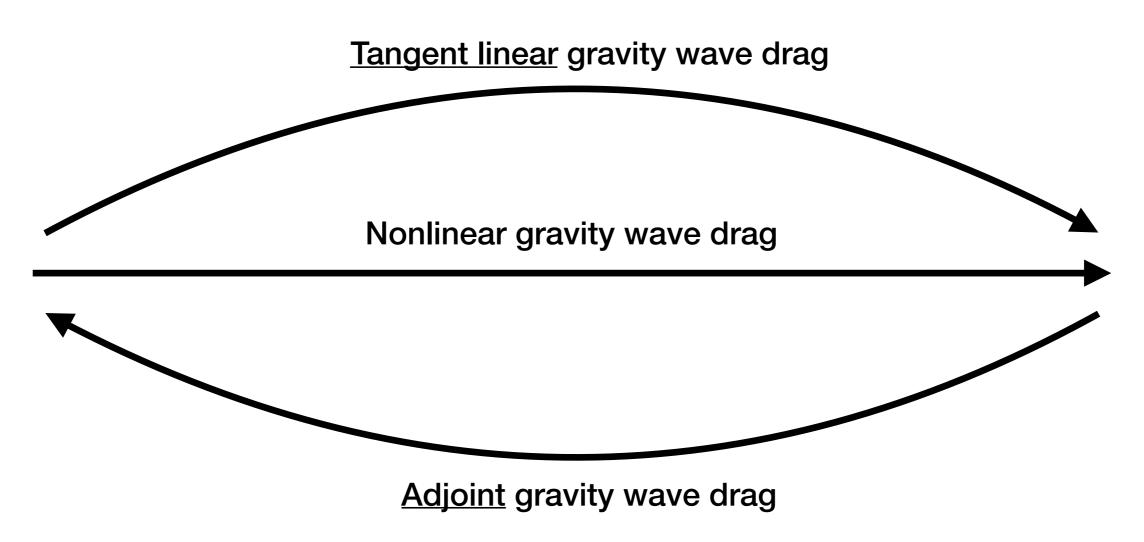


adjoint model

 $\partial J/\partial x_N$

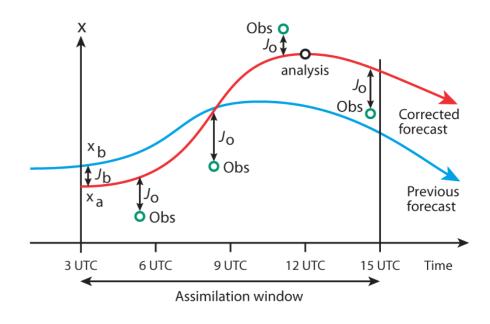
What is needed?

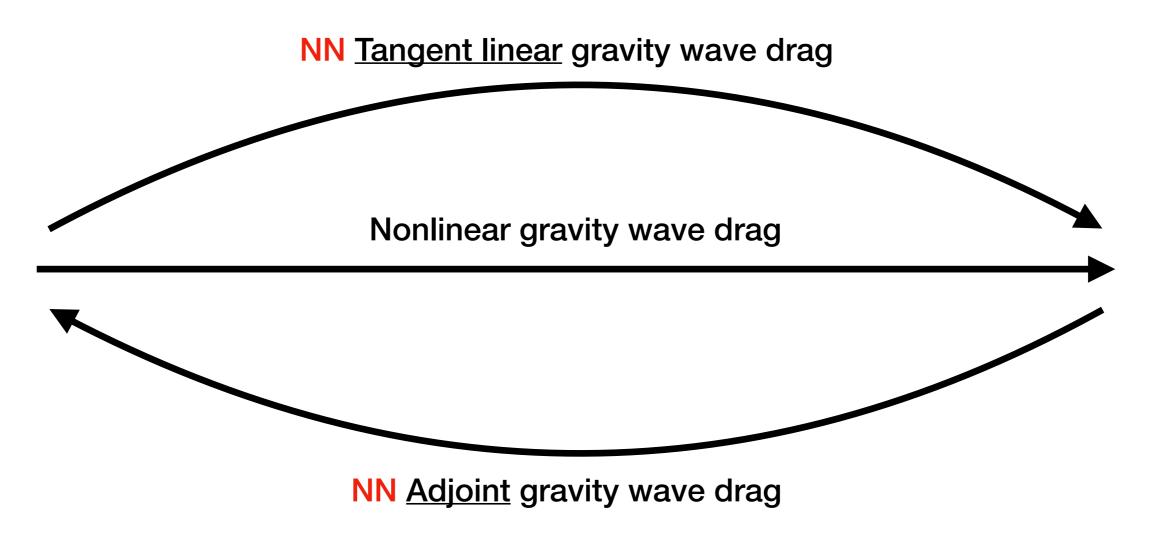




These are hard to develop & maintain. Almost always involve simplifications.

Our experiments





Use existing nonlinear gravity wave drag. Use the NN to calculate TL & AD.

Our experiments



Difference in RMSE (2 - 1) for forecasts initialised with two different DA systems 1. DA using existing TL & AD for NOGWD.

2. DA using NN-derived TL & AD for NOGWD.

No statistical significance

0.04

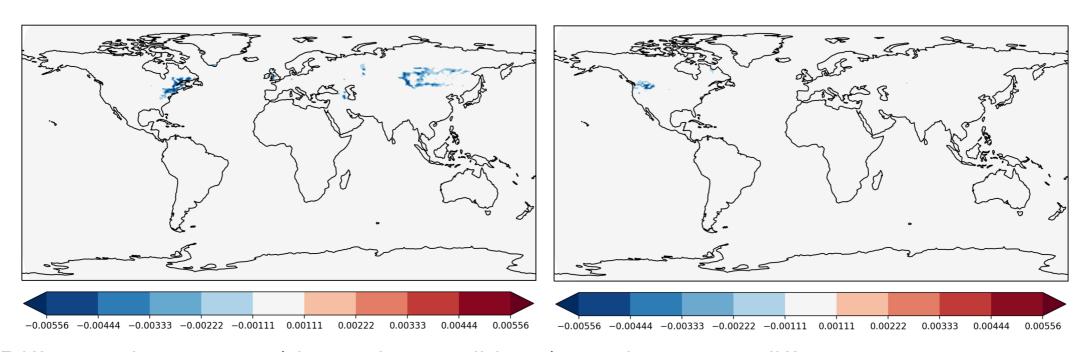
-0.04

NOGWD Summary

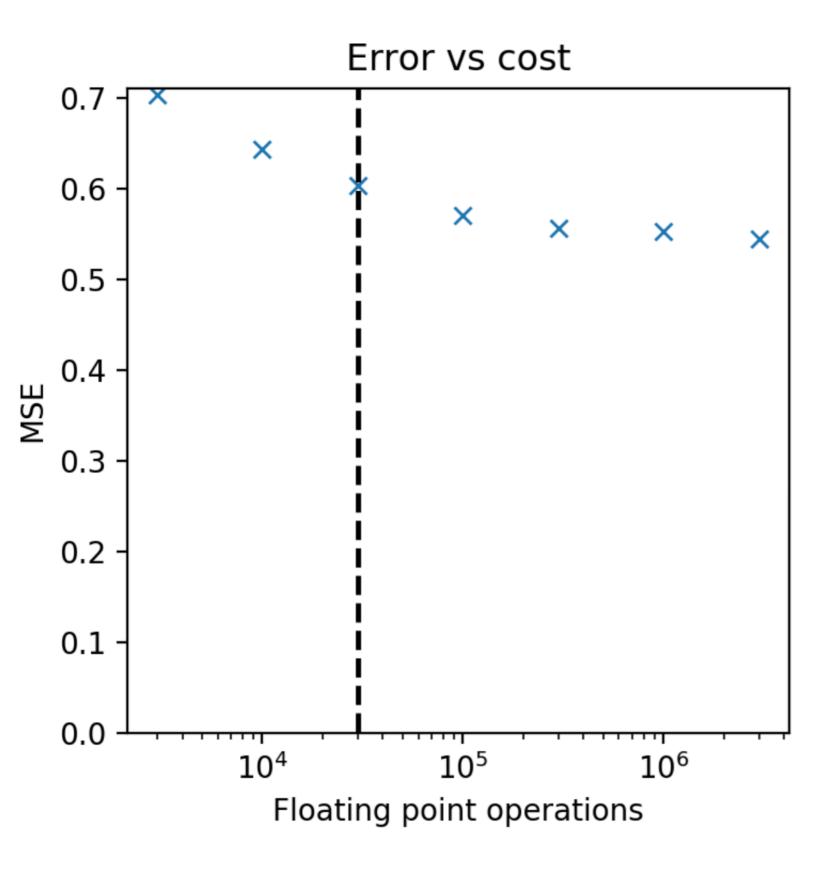
- Can we emulate parameterisation schemes? Yes
- Are they cheaper than the originals? Maybe
- Can this help with data assimilation? Yes

Orographic Gravity wave drag

- Capture the impact of orographic features which are smaller than the grid scale.
- Broadly very similar scheme from a NN perspective, similar input and output vectors.
- Key difference: strong localisation in outputs.



Different time-steps (dynamic conditions) produce very different sparse outputs.

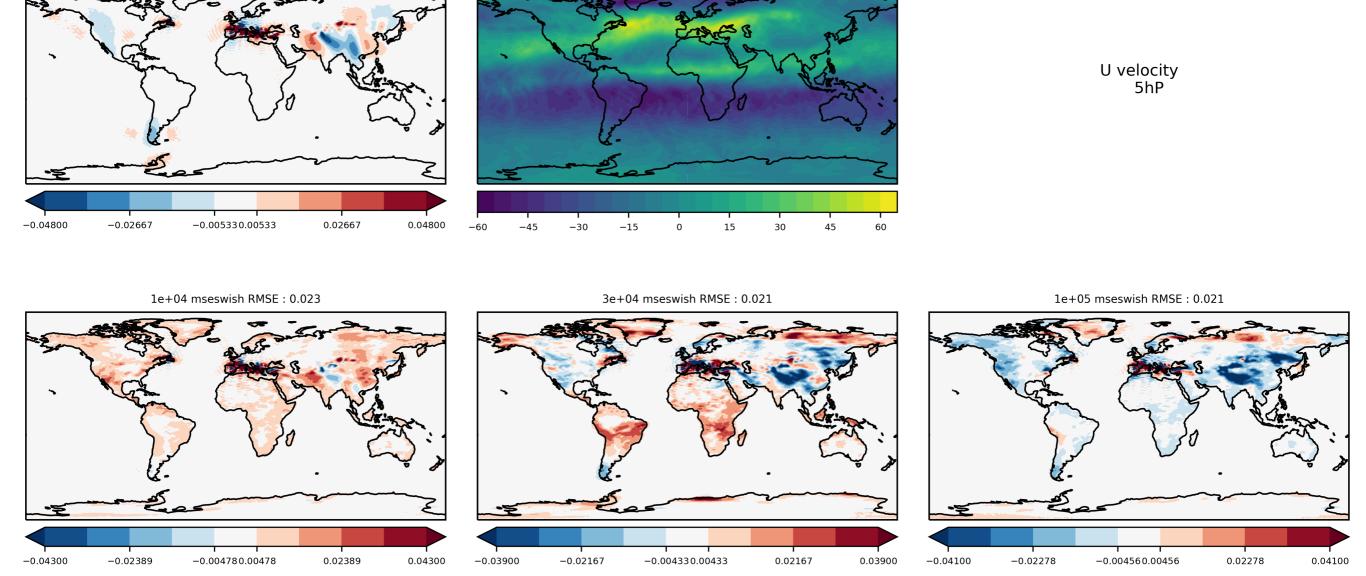


- Error stagnates.
- Compare with a persistence error of O(1).
- Error seems large, try coupled?

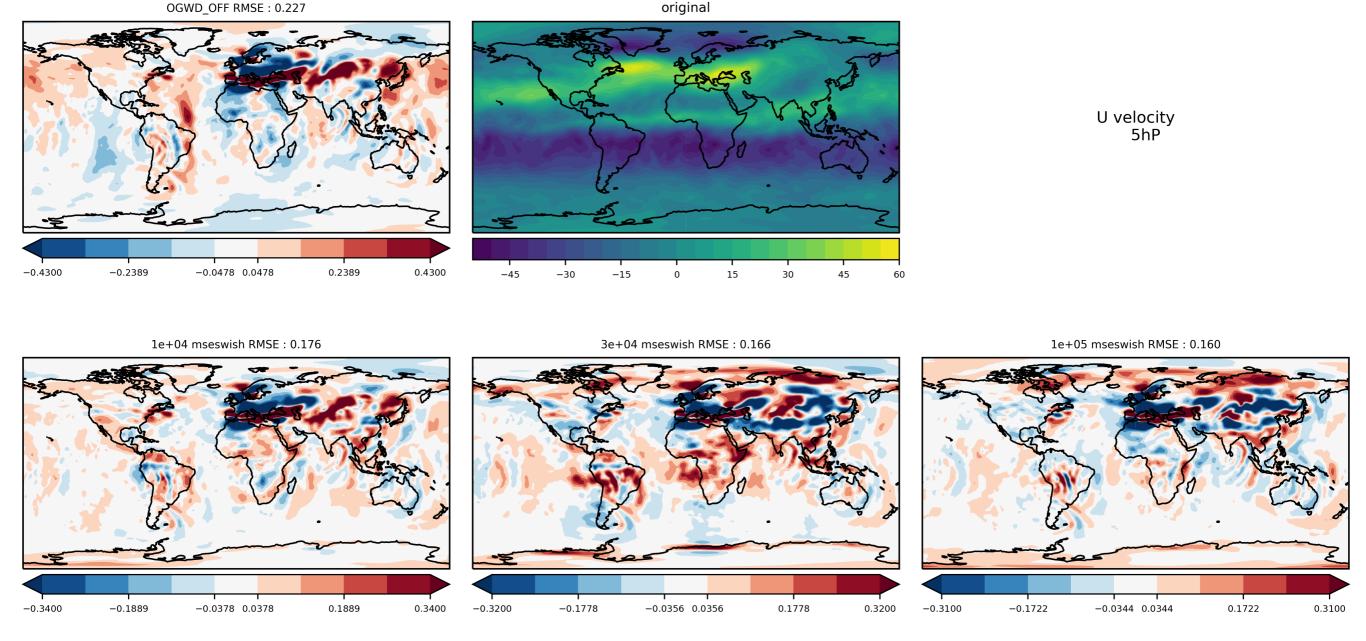
Coupled mode, T = 1

original

OGWD OFF RMSE: 0.025



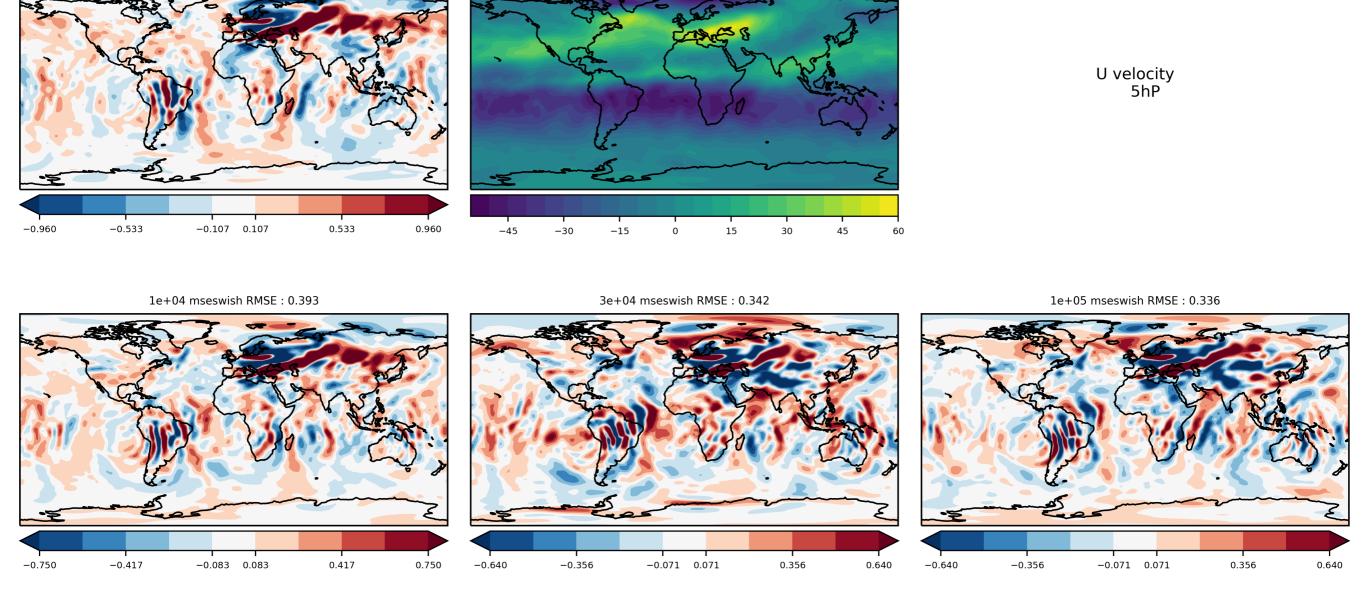
Coupled mode, T = 24



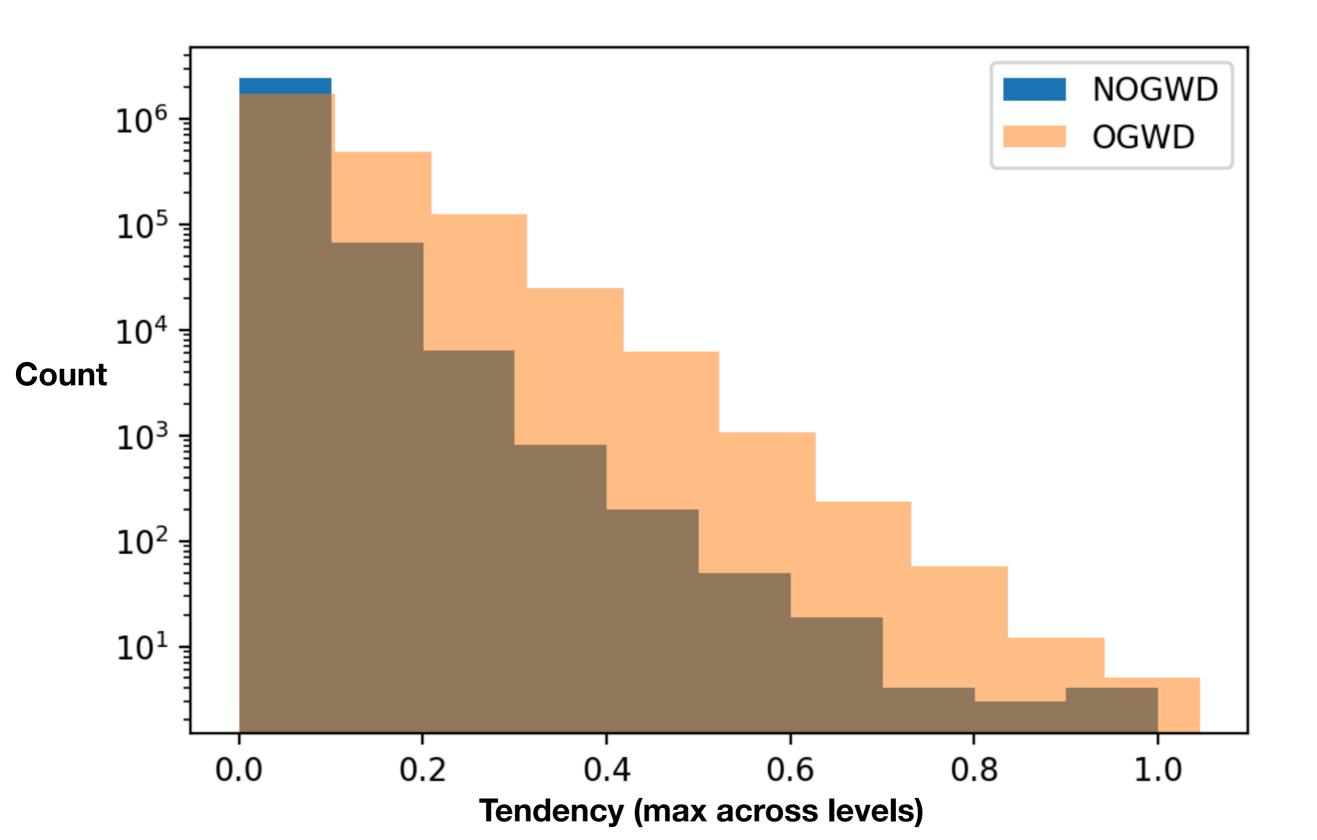
Coupled mode, T = 48

original

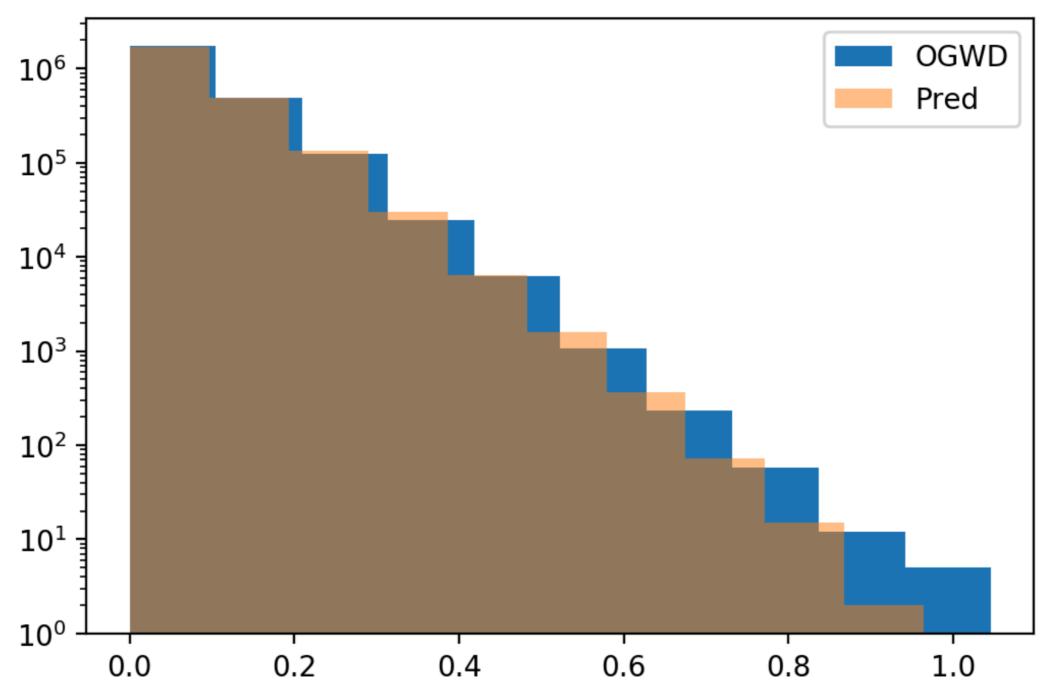
OGWD OFF RMSE: 0.497



Are the rare events more rare?



How about predicting extremes?



OGWD scheme predicts extremes but not in the right places. Networks unable to learn importance of surface parameters.