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1. Motivation

Tornadoes are too small to be resolved by
operational dynamical models.

Though many new datasets.§.,high
resolution satellite and dugdolarization radar)
have potential to improve tornado prediction,
they are not easily assimilated into dynamical
models.

Thus, machine learning (ML) is becoming a
popular approach.

However, end users (including meteorologists ) |
often do not trust ML, which has caused a
push for interpretable ML.

Image source:
https://en.wikipedia.org/wiki/2011 Joplin_tornado#/media/File:Joplin_2011 tornado_damage.jpg
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1. Motivation

A Many interpretation tools have
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Image source: Figure 2a lohpuschkiret al. (2019)



2. Input data

A We use three datasets as input to the CNN:
A GridRad lomeyerand Bowman 2017)
A Rapid Refresh (RAP) dynamical weather model
A Tornado reports in the Severe Weather Data Inventory (SWDI)

A We use each dataset for a different purpose:
A GridRad: create storrnentered radar images to use as predictors
A RAP: create neastorm (proximity) soundings to use as predictors
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2. Input data

A GridRad is a multiadar dataset
created by combining and quality
controlling data from all WSB3D
radars in the continental United States.
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A Resolution:
A 5-minute time steps
A 0.0208 horizontal spacing (~2 km)
A 0.5km vertical spacing from-D km o ki b
A 1.0-km vertical spacing aloft VCP 12 Coverage P WS 5

3,000 ft above ground level*

A We acquired data for 154 days:
A Training: 201214
A Validation: 201518

L 0 375 750

A Testing: 2011 = miles

Image sourcehttps://www.roc.noaa.gov/WSR88D/Maps.aspx
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A GridRad contains the following variables:
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2. Input data

Reflectivity

Velocityspectrum width (increases
with mean wind speed and
turbulence)
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2. Input data

A GridRad contains the following variables:

A Reflectivity

p>X

Velocity-spectrum width(increases
with mean wind speed and
turbulence)

A Vorticity
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2. Input data

A GridRad contains the following variables:

A Reflectivity

A Velocityspectrum width (increases
with mean wind speed and
turbulence)

A Vorticity
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2. Input data

A GridRad contains the following variables:

A Reflectivity

p>X

Velocityspectrum width (increases
with mean wind speed and
turbulence)

A Vorticity

p>X
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2. Input data

Storm objects at 0210 UTC 27 Apr 2011

A Preprocessing is summarized below j 2
(details in Lagerquigt al. 2020). 32.7°N
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3. Create stormcentered radar images
(to use as predictors)
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2. Input data

Create proximity soundings (to use as
predictors)

A One per storm snapshot

A Represents neastorm environment
over the next hour 20013

Link tornado reports to storms —y i

Pressure (mb)

Create labels (to use as targets)

A One per storm snapshot
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3. Model architecture and evaluation

A CNNs use three main types of layers:

A Convolutional: to detect spatial features

A Pooling: to decrease spatial resolution, so that further convolutional layers can detectsaajer
features
Fully connected: to map spatial features to predictions (here, tornado probabilities)
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Image source:
https://adeshpande3.github.io/ABeginner%2#suideTo-UnderstandingConvolutionalNeuratNetworks/
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Right: architecture of our CNN for
tornado prediction.
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4. The permutation test

The permutation test measures the overall importance of each predictor variable. .
A ah@SNYXffté¢ I | SNIFYISR 20SNI It G(GSadAay3a SEF YL
A Applied to the trained CNN; does not involve retraining the CNN

GLYLZNII Y OS® =& muciNINR pebarm@ancke declines whers permuted.

Gt SNXdziiF GA2Yyé YSI ya NdysRiBarihey arcaksipfed tb the/mBongrekahdles.2

If performance does not decline significantlyjs either unimportant or too strongly correlated with
other predictors.



4. The permutation test

A There are 4 versions of the permutation test:
Singlepass forward Breiman2001)
Multi-pass forward (Lakshmana al. 2015)
Singlepass backwards

Multi-pass backwards

> > >

A The 4 versions give different results when predictors are strongly correlated, similar results otherwise.
A For a detailed explanation, see Section 7.1.1 of Lagerquist (2020).

A Thus, we run all 4 versions and compare the results.



4. The permutation test

Predictors Labels

GIF at right: singlgpass forward test.
The procedure is belowletting  be the trained
model and%be the clean predictor set. o
A al tSIHYyé YSIya y2 LINSRAO
. Repeat the following for each predictar:
a) Copy the datasetto a new variablesee
b) Permute values ab over all examples i 2
c) Passt @hrough and record the new loss.
. Rank predictors by loss after permutation.
Thek™-most important predictor is that whose
permutation causes thé™M-highest loss.

Examples




4. The permutation test

Predictors Labels

A GIF at right: multipass forward test.

A The procedure is belowletting® be the set of
predictors that are not permanently permuted.

. 5 {APIOAABAOI OO

2. Run the singlgass forward test for all
predictors in> . Permanently permute the
one that causes the highest loss.

Examples

3. Repeat step 2 untl is empty.

A Thekt-most important predictor is thekt to
be permanently permuted.




Forward single-pass test Forward multi-pass test (b)
None permuted

Q

Results shown at right.

Radar variables in orangepunding
variables in purple.

In each panel, the most (least)
important predictor is at the top
(bottom).
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significantly (at 95% level) more
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5. Saliency maps

A Saliency$imonyaretalH nMn 0 2NJ daSyaAruoArAgadezéd A4 RSTAYSR
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A 1 = activation of output neuron = tornado probability
A &= one input (one predictor variable at one grid point)
A & =wvalue in a real example

A In plain English: saliency is a lineaproxto —, valid around th&svalue found in a real example.
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Right: composite (average) radar image for the 100

best hits.
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Right: composite (average) radar
image for the 100 worst misses.

a2 2NRG YAaasSae T
lowest CNN probabilities (average of
8.6%).

These storms have weak rotation
and shallow, elongated reflectivity
core.

This makes sense, as 67 of the 100
storms are part of quadinear
convective system)LC}H

QLCS storms generally produce
weaker tornadoes, and these
tornadoes are commonly missed by
humans and other forecasting
methods Brotzgeet al.2013;
AndersonFreyet al.2016).
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A Right: average saliency map for best (a) Best hits
h|tS : " gl ) 12

A Solid (dashed) contours mean positive
(negative) saliency.
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A Right: average saliency map for worst
misses.

A Solid (dashed) contours mean positive
(negative) saliency.

Pwomado INCreases with all variables inside the storm, [Jas
decreases with all variables around the storm [

A Thusp,.q iNCreases as the s'torm
becomes stronger and more discrete
(isolated).
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5. Saliency maps
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A Details in Section 7.1.2 of —1 5 —1

Lagerquist (2020). o 1 -1

Image sourcehttps://developer.nvidia.com/discover/convolution
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Right: sanity checks for best hits.

In panels bd, stippling shows where
difference between test and actual
saliency map is significant (at 95%
level).

Our Monte Carlo procedure accounts
for false discovery due to multiple
comparisons (one per grid point).

We make the test more conservative by
comparing scaled saliency values (the
rank over all grid points), rather than
raw saliency values.

Percentage of significant differences:
20% in panel b, 23% in panel ¢, 16% in
panel d.
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A Right: sanity checks for worst misses.

A In panels bd, stippling shows where
difference between test and actual
saliency map is significant (at 95%
level).

A Percentage of significant differences:
22% in panel b, 21% in panel ¢, 20% in
panel d.



