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1. Motivation

Å Tornadoes are too small to be resolved by 
operational dynamical models.

Å Though many new datasets (e.g.,high-
resolution satellite and dual-polarization radar) 
have potential to improve tornado prediction, 
they are not easily assimilated into dynamical 
models.

Å Thus, machine learning (ML) is becoming a 
popular approach.

Å However, end users (including meteorologists) 
often do not trust ML, which has caused a 
push for interpretable ML.

Image source: 
https://en.wikipedia.org/wiki/2011_Joplin_tornado#/media/File:Joplin_2011_tornado_damage.jpg

https://en.wikipedia.org/wiki/2011_Joplin_tornado#/media/File:Joplin_2011_tornado_damage.jpg


1. Motivation

Å Many interpretation tools have 
been developed in the ML 
literature, but they often 
produce noise that does not 
reflect true physical processes.

Å We have developed 
significance tests and physical 
constraints for 4 ML-
interpretation methods.

Å ²Ŝ ŀǇǇƭȅ ǘƘŜǎŜ άŀǳƎƳŜƴǘŜŘέ 
interpretation methods to a 
convolutional neural network 
for tornado prediction.

Image source: Figure 2a of Lapuschkinet al.(2019)



2. Input data

Å We use three datasets as input to the CNN:
Á GridRad (Homeyerand Bowman 2017)
Á Rapid Refresh (RAP) dynamical weather model
Á Tornado reports in the Severe Weather Data Inventory (SWDI)

Å We use each dataset for a different purpose:
Á GridRad: create storm-centered radar images to use as predictors
Á RAP: create near-storm (proximity) soundings to use as predictors
Á {²5LΥ ŎǊŜŀǘŜ ƭŀōŜƭǎ όάȅŜǎέ ƛŦ ǘƘŜ ǎǘƻǊƳ ƛǎ ǘƻǊƴŀŘƛŎ ƛƴ ǘƘŜ ƴŜȄǘ ƘƻǳǊΣ άƴƻέ ƻǘƘŜǊǿƛǎŜύ



2. Input data

Å GridRad is a multi-radar dataset, 
created by combining and quality-
controlling data from all WSR-88D 
radars in the continental United States.

Å Resolution:
Á 5-minute time steps
Á 0.0208° horizontal spacing (~2 km)
Á 0.5-km vertical spacing from 0-7 km
Á 1.0-km vertical spacing aloft

Å We acquired data for 154 days:
Á Training: 2012-14
Á Validation: 2015-18
Á Testing: 2011

Image source:https://www.roc.noaa.gov/WSR88D/Maps.aspx

https://www.roc.noaa.gov/WSR88D/Maps.aspx


2. Input data

Å GridRad contains the following variables:

Á Reflectivity

Á Velocity-spectrum width (increases 
with mean wind speed and 
turbulence)

Á Vorticity

Á Divergence
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2. Input data

Å Pre-processing is summarized below 
(details in Lagerquist et al.2020).

Å 9ŀŎƘ /bb ŜȄŀƳǇƭŜ ƛǎ ƻƴŜ άǎǘƻǊƳ 
ǎƴŀǇǎƘƻǘέ όƻƴŜ ǎǘƻǊƳ ŎŜƭƭ ŀǘ ƻƴŜ 
time).

1. Outline storm cells at each time 
step

2. Track storm cells over time

3. Create storm-centered radar images 
(to use as predictors)
Á One per storm snapshot
Á On equidistant grid with storm 

motion towards the right



2. Input data

4. Create proximity soundings (to use as 
predictors)
Á One per storm snapshot
Á Represents near-storm environment 

over the next hour

5. Link tornado reports to storms

6. Create labels (to use as targets)
Á One per storm snapshot
Á ά¸Ŝǎέ ƛŦ ǎǘƻǊƳ ƛǎ ǘƻǊƴŀŘƛŎ ƛƴ ǘƘŜ ƴŜȄǘ 
ƘƻǳǊΣ άƴƻέ ƻǘƘŜǊǿƛǎŜ



3. Model architecture and evaluation

Å CNNs use three main types of layers:
Á Convolutional: to detect spatial features
Á Pooling: to decrease spatial resolution, so that further convolutional layers can detect larger-scale 

features
Á Fully connected: to map spatial features to predictions (here, tornado probabilities)

Image source:
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/


Å Right: architecture of our CNN for 
tornado prediction.

Å (a) Storm-centered radar image.  Only 
ǘƘǊŜŜ ƻŦ ǘƘŜ ǘǿŜƭǾŜ ƘŜƛƎƘǘǎ όмΣ нΣ ΧΣ 
12 km AGL) are shown.

Å (b-e) Feature maps produced by 
convolutional and pooling layers, at 
the lowest height only.

Å Another branch of the CNN uses 1-D 
convolution and pooling to detect 
spatial features in proximity 
soundings (not shown).

Å Pooling layers successively double 
grid spacing of radar image.
Á Horizontal spacing goes from 

1.5 O 3 O 6 O 12 km.
Á Vertical spacing goes from         

1 O 2 O 4 O 8 km.



3. Model architecture and evaluation

Å Right: results on testing data.

Å Testing set contains 137 270 examples with 3.43% event 
frequency.
Á In other words, only 3.43% of storms are tornadic in 

the next hour.

Å Area under ROC curve > 0.9, generally considered 
άŜȄŎŜƭƭŜƴǘέ ǇŜǊŦƻǊƳŀƴŎŜΦ

Å Maximum CSI is low (0.30), but this is typical for rare events 
(difficult to achieve high POD with low FAR).

Å Upshot: model performance is good enough to motivate 
model interpretation.



4. The permutation test

Å The permutation test measures the overall importance of each predictor variable.
Á άhǾŜǊŀƭƭέ Ґ ŀǾŜǊŀƎŜŘ ƻǾŜǊ ŀƭƭ ǘŜǎǘƛƴƎ ŜȄŀƳǇƭŜǎ
Á Applied to the trained CNN; does not involve retraining the CNN

Å άLƳǇƻǊǘŀƴŎŜέ ƻŦ ǇǊŜŘƛŎǘƻǊ ὼ= how much CNN performance declines when ὼis permuted.

Å άtŜǊƳǳǘŀǘƛƻƴέ ƳŜŀƴǎ ǊŀƴŘƻƳƭȅ ǎƘǳŦŦƭƛƴƎ ƳŀǇǎ ƻŦ ●▒, so that they are assigned to the wrong examples.

Å If performance declines significantly, ●▒is important.

Å If performance does not decline significantly, ὼ is either unimportant or too strongly correlated with 

other predictors.



4. The permutation test

Å There are 4 versions of the permutation test:
Á Single-pass forward (Breiman2001)
Á Multi-pass forward (Lakshmanan et al.2015)
Á Single-pass backwards
Á Multi-pass backwards

Å The 4 versions give different results when predictors are strongly correlated, similar results otherwise.
Á For a detailed explanation, see Section 7.1.1 of Lagerquist (2020).

Å Thus, we run all 4 versions and compare the results.



4. The permutation test

Å GIF at right: single-pass forward test.

Å The procedure is below, letting ꞈ be the trained 
model and ╧be the clean predictor set.
Á ά/ƭŜŀƴέ ƳŜŀƴǎ ƴƻ ǇǊŜŘƛŎǘƻǊǎ ŀǊŜ ǇŜǊƳǳǘŜŘΦ

1. Repeat the following for each predictor ὼ:

a) Copy the dataset ╧to a new variable, ╧ᴂ.
b) Permute values of ὼover all examples in ╧ᴂ.

c) Pass ╧ᴂthrough ꞈ and record the new loss.

2. Rank predictors by loss after permutation.

Å The kth-most important predictor is that whose 
permutation causes the kth-highest loss.



4. The permutation test

Å GIF at right: multi-pass forward test.

Å The procedure is below, letting לbe the set of 
predictors that are not permanently permuted.

1. ל ÁÌÌÐÒÅÄÉÃÔÏÒÓ

2. Run the single-pass forward test for all 
predictors in ל.  Permanently permute the 
one that causes the highest loss.

3. Repeat step 2 until לis empty.

Å The kth-most important predictor is the kth to 
be permanently permuted.



Å Results shown at right.

Å Radar variables in orange,sounding 
variables in purple.

Å In each panel, the most (least) 
important predictor is at the top 
(bottom).

Å Bold font means that the predictor is 
significantly (at 95% level) more 
important than the one below it.

Å This is determined by bootstrapping the 
difference between post-permutation 
losses 1000 times.

Å According to all 4 versions of test:
Á Reflectivity and vorticity are most 

important overall
Á v-wind is most important sounding 

variable



5. Saliency maps

Å Saliency (Simonyanet al.нлмпύΣ ƻǊ άǎŜƴǎƛǘƛǾƛǘȅΣέ ƛǎ ŘŜŦƛƴŜŘ ōŜƭƻǿΥ

ί
‬ὴ

‬ὼ

Å ὴ= activation of output neuron = tornado probability
Å ὼ= one input (one predictor variable at one grid point)
Å ὼ = ὼ-value in a real example

Å In plain English: saliency is a linear approxto , valid around the ὼ-value found in a real example.

Å ¢ƘǳǎΣ ƻǳǊ ǎŀƭƛŜƴŎȅ ƳŀǇǎ ŀƴǎǿŜǊ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǉǳŜǎǘƛƻƴ όŦǊƻƳ ǘƘŜ /bbΩǎ ǇŜǊǎǇŜŎǘƛǾŜύΥ

άIƻǿ ǿƻǳƭŘ ȅƻǳ ŎƘŀƴƎŜ ǘƘŜ ǎǘƻǊƳ ǘƻ ƛƴŎǊŜŀǎŜκŘŜŎǊŜŀǎŜ ǘƻǊƴŀŘƻ ǇǊƻōŀōƛƭƛǘȅΚέ



Å Right: composite (average) radar image for the 100 
best hits.

Å ά.Ŝǎǘ Ƙƛǘǎέ Ґ ǇƻǎƛǘƛǾŜ ŎŀǎŜǎ ǿƛǘƘ ƘƛƎƘŜǎǘ /bb 
probabilities (average of 99.2%).

Å Composite looks like a supercell.

Deep mesocyclone with strong rotation

Deep reflectivity core

Hook echo

Strong low-level convergence

Strong upper-level divergence



Å Right: composite (average) radar 
image for the 100 worst misses.

Å ά²ƻǊǎǘ ƳƛǎǎŜǎέ Ґ ǇƻǎƛǘƛǾŜ ŎŀǎŜǎ ǿƛǘƘ 
lowest CNN probabilities (average of 
8.6%).

Å These storms have weak rotation 
and shallow, elongated reflectivity 
core.

Å This makes sense, as 67 of the 100 
storms are part of quasi-linear 
convective systems (QLCS).

Å QLCS storms generally produce 
weaker tornadoes, and these 
tornadoes are commonly missed by 
humans and other forecasting 
methods (Brotzgeet al.2013; 
Anderson-Frey et al. 2016).



Å Right: average saliency map for best 
hits.

Å Solid (dashed) contours mean positive 
(negative) saliency.

ptornado increases with reflectivity 
in core, especially at upper levels

ptornado increases with vorticity in 
mesocyclone, especially at lower levels

ptornado increases with spectrum width



Å Right: average saliency map for worst 
misses.

Å Solid (dashed) contours mean positive 
(negative) saliency.

ptornado increases with all variables inside the storm,
decreases with all variables around the storm

Å Thus, ptornado increases as the storm 
becomes stronger and more discrete 
(isolated).



5. Saliency maps

Å ¢ƻ ŜƴǎǳǊŜ ǘƘŀǘ ǎŀƭƛŜƴŎȅ ƳŀǇǎ ŀǊŜ ƴƻǘ ƴƻƛǎŜΣ ǿŜ ŀǇǇƭȅ ǘƘŜ άǎŀƴƛǘȅ ŎƘŜŎƪǎέ ǇǊƻǇƻǎŜŘ ōȅ !ŘŜōŀȅƻ et al.(2019):

1. Edge-detector testΥ άŎŀƴ ŀƴ ǳƴǘǊŀƛƴŜŘ ŜŘƎŜ-ŘŜǘŜŎǘƻǊ ǊŜǇǊƻŘǳŎŜ ǘƘŜ /bbΩǎ ǎŀƭƛŜƴŎȅ ƳŀǇǎΚέ

2. Model-parameter-randomization testΥ άŘƻŜǎ ǘƘŜ /bb ǇǊƻŘǳŎŜ ǎƛƳƛƭŀǊ ǎŀƭƛŜƴŎȅ ƳŀǇǎ ǿƘŜƴ ǿŜƛƎƘǘǎ ƛƴ ƻƴŜ ƭŀȅŜǊ ŀǊŜ 
ǊŀƴŘƻƳƛȊŜŘΚέ

3. Data-randomization testΥ άŎŀƴ ŀ /bb ǘǊŀƛƴŜŘ ǿƛǘƘ ǊŀƴŘƻƳƛȊŜŘ ƭŀōŜƭǎ ǇǊƻŘǳŎŜ ǎƛƳƛƭŀǊ ǎŀƭƛŜƴŎȅ ƳŀǇǎΚέ

Å Whereas the sanity checks 
proposed by Adebayo et al.are 
visual, we include a formal 
significance test, based on 
Monte Carlo resampling.
Á Details in Section 7.1.2 of 

Lagerquist (2020).

Image source: https://developer.nvidia.com/discover/convolution

https://developer.nvidia.com/discover/convolution


Å Right: sanity checks for best hits.

Å In panels b-d, stippling shows where 
difference between test and actual 
saliency map is significant (at 95% 
level).

Å Our Monte Carlo procedure accounts 
for false discovery due to multiple 
comparisons (one per grid point).

Å We make the test more conservative by 
comparing scaled saliency values (the 
rank over all grid points), rather than 
raw saliency values.

Å Percentage of significant differences: 
20% in panel b, 23% in panel c, 16% in 
panel d.



Å Right: sanity checks for worst misses.

Å In panels b-d, stippling shows where 
difference between test and actual 
saliency map is significant (at 95% 
level).

Å Percentage of significant differences: 
22% in panel b, 21% in panel c, 20% in 
panel d.


