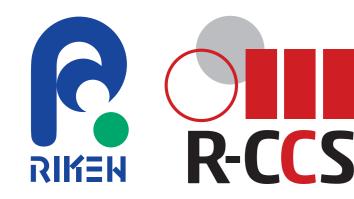
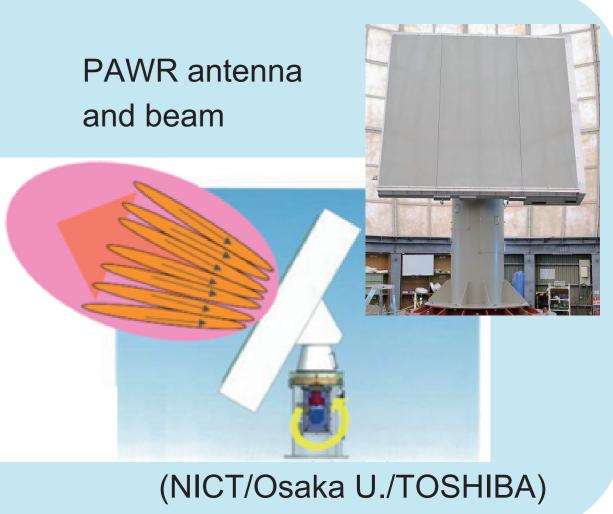
Toward an integrated NWP-DA-AI system for 30-second-update precipitation prediction



Shigenori Otsuka (RIKEN), Yasumitsu Maejima (RIKEN), Pierre Tandeo (IMT Atlantique), and Takemasa Miyoshi (RIKEN)

1. Introduction

- Phased-Array Weather Radar (PAWR) at NICT Kobe
 - Every 30 seconds, 60-km-range, 100-m range resolution, 300 azimuth, 110 elevation
- A high-resolution regional NWP system (SCALE-LETKF, Miyoshi et al., 2016a,b, Lien et al., 2017)
- 3D optical flow nowcast: https://weather.riken.jp/ (Otsuka et al. 2016, WAF)
- A deep-learning-based system to merge observations and forecasts is newly developed.



2. Deep-learning-based system

- Based on Conv-LSTM (Shi et al. 2015, NIPS)
 - Long Short Term Memory (Hochreiter & Schmidhuber 1997, Neural Comp.)
 - Suitable for time series
 - Convolution: taking account of spatial pattern
 - Weights: copied from the encoder to the forecaster
 - Conv-LSTM outperforms CNN for two-dimensional precipitation nowcasting
- Extended to three-dimensional data
- Future data are used in the decoder network

Machine learning with 3D Conv-LSTM Long Short-Term Memory is suitable for sequence data (Hochreiter & Schmidhuber 1997) Convolutional neural network is combined (Shi et al. 2015) Observation Weather Simulation OUTPUT 3D Precip. Nowcasting ConvLSTM, ConvLSTM, ConvLSTM, Push time series of past observation Supervised Learning Supervised Learning

3. Test case

- Observation data: Kobe PAWR observations, 250-m mesh, 321x321x57 pixels
- Future data:
 - Optical flow-based 3D nowcast (TREC)
 - Surface precipitation forecast by SCALE-LETKF
- Training period:

15:10:00-17:29:30 UTC, 10 June 2019

- Verification period:

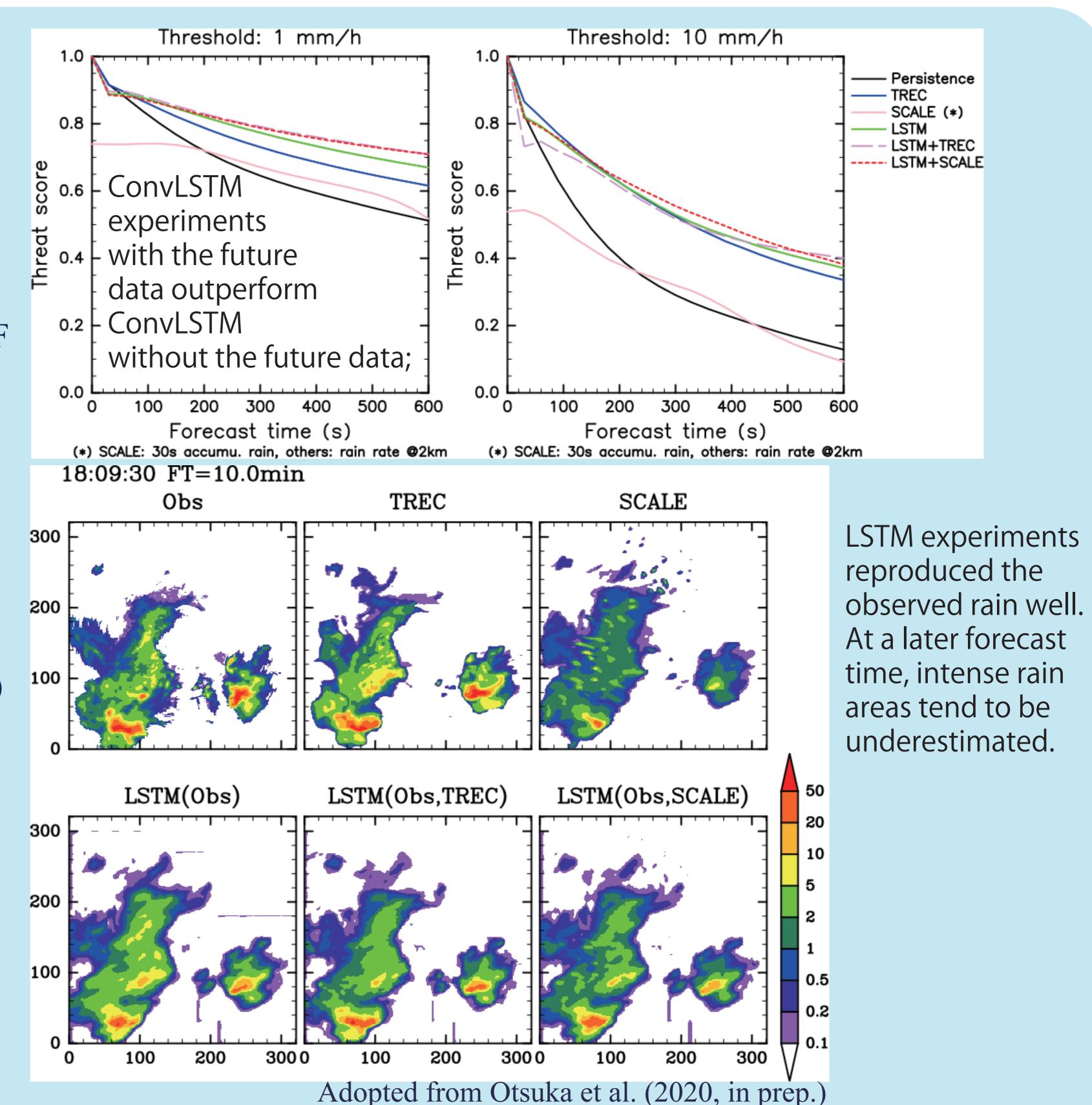
17:40:00-17:59:30 UTC, 10 June 2019

- 6 steps for the past data (encoder),

20 steps for the future data (decoder)

- Subregions of 61 x 61 x 9 pixels (z = 1.5-3.5 km) with rain echoes are extracted from the original data, and are used for training and inference.
- Optimizer: Adam
- Loss function: Balanced mean square error
- Convolution kernel size: 3
- ConvLSTM1: 24 channels,

ConvLSTM2: 3 channels



5. Summary

- The Conv-LSTM is extended to 3D. A real-time 3D Conv-LSTM system is implemented with the Kobe PAWR.
- The 3D Conv-LSTM captured the evolution of convective cores.
- Conv-LSTM with forecast data outperformed that without forecast data.
- Future perspective: Training with PAWR data in different seasons / training with other model variables such as winds, humidity
- The machine learning architechture will be updated to improve the prediction accuracy.