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Introduction

Recent developments in machine learning (ML) have demonstrated impressive skills in
reproducing complex spatiotemporal processes. However, contrary to data assimilation (DA),
the underlying assumption behind ML methods is that the system is fully observed and
without noise, which is rarely the case in numerical weather prediction. In order to overcome
this issue, it is possible to embed the ML problem into a DA formalism characterised by a
cost function similar to that of the weak-constraint 4D-Var [2]. In practice ML and DA are
combined to solve the problem: DA is used to estimate the state of the system while ML is
used to estimate the full model.

In realistic systems, the model dynamics can be very complex and it may not be possible to
reconstruct it from scratch. An alternative could be to learn the model error of a physical
model using the same approach combining DA and ML. In this poster, we test the feasibility
of this method using a quasi geostrophic (QG) model.

A Bayesian framework for ML and DA

The system evolution is governed by the state equation

xk+1 =Mt
k(xk), (1)

whereMt is the resolvent of the unknown true dynamical model. In realistic systems, the true
system state xt is only known through sparse and noisy observations y via

yk = Hk(xt
k) + vt

k. (2)

The goal is to provide a surrogate model Mml to emulate Mt. Mml is typically a neural
network (NN) and depends on a set of parameters p (weights and biases). A Bayesian
framework for this problem is to minimise the cost function [2]

J (p,x0:Nt
) = 1

2

Nt∑
k=0

∥∥yk −Hk(xk)
∥∥

R−1 + 1
2

Nt−1∑
k=0

∥∥xk+1 −Mml
k (p,xk)

∥∥
Q−1. (3)

Recognising that the parameters p and the system trajectory x0:Nt are of different nature, [2,
3] suggest to use a coordinate descent to minimise this cost function.
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We want to use this method to correct the error of an original, physical modelMo. In this
case, we have to replaceMml by the hybrid surrogate modelMt +Mml in eq. (3). If the true
trajectory xt were known (dense, noiseless observations) then the NN could be trained with
xt
k 7→ xt

k+1 −Mo
k(xt

k). With sparse and noisy observations, we need to use:
• the analysis xa

k in place of the truth xt
k;

• the analysis increments xa
k+1 −Mo

k(xa
k) in place of xt

k+1 −Mo
k(xt

k).
Correcting the error ofMo is likely to be an easier inference problem than learning the full
modelMt. We will focus on the first DA–ML cycle.

The quasi-geostrophic model

The QG model expresses the conservation of (non-dimensional) potential vorticity q for two
layers of constant potential temperature in the x− y plane:

dq1

dt
= dq2

dt
= 0. (4)

The potential vorticity q is related to the stream function ψ through

q1 = ∆ψ1 − F1(ψ1 − ψ2) + βy, (5)
q2 = ∆ψ2 − F2(ψ2 − ψ1) + βy + R(x, y). (6)

The domain is periodic in the x direction, and fixed boundary conditions are used for q in the
y direction. We use a discretisation of 40× 20 points.

0 6 12 18 24

lead time [days]

0

1

2

3

4

5

6

7

8

R
M

S
E

original model

hybrid surrogate model

model variability

Figure 2: Typical forecast skill of the original and the
hybrid surrogate models.

The control vector is ψ on both layers, which
gives a total of Nx = 1600 variables. The evol-
ution of ψ s characterised by a wave, slowly
moving towards the west, with a mean period
around 16 days. The model is chaotic, with a
doubling time of errors around 250 hours.

Model error is introduced as perturbed paramet-
ers (layer depths and orography) and doubled
integration time step. The idea is to mimic er-
rors due to deficiencies in the physical paramet-
risation, limited spatial resolution, or erroneous
time integration. See fig. 1 for an illustration.
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Figure 1: Typical snapshot of the QG model. Top left: model state. Top right, middle left and right: forecast error
starting from this model state for several lead times. Bottom left and right: corresponding NN predictions.

Neural network training

We first perform a long cycled DA experiment withMo, the perturbed QG model. Observations
are available at 50 random locations every 2 hours. The observation noise is about 2 % of the
model variability. We use the strong-constraint 4D-Var algorithm with consecutive windows
of 24 hours. The time-average analysis RMSE is about 5 % of the model variability.

We use the analysis increments to train small NNs. Depending on the sampling frequency of
the ML step, the NNs are able to explain 80 % to 90 % of the analysis increments variance,
but only 30 % to 85 % of the model error variance. Visually, the NNs predict correct model
error patterns, but incorrect scaling. Decreasing the sampling frequency of the ML step can
help, because it increases the relative accuracy of the analysis increments. See fig. 1 for an
illustration.

The accuracy of mid- to long-range forecasts with the hybrid model are then evaluated using
the forecast skill, i.e., the time evolution of the forecast error starting from the same initial
condition. See fig. 2 for an illustration. The hybrid model indeed yields better forecasts than
the original model, and the correction is effective until 10 to 16 days. A systematic comparison
of different NNs and training setups shows that:
• only short trajectories are necessary to train these small NNs;
• nonlinear NNs noticeably outperform linear NNs;
• fully-connected layers can be (to some extent) replaced by convolutional layers, which are

more scalable to high-dimensional problems.

Corrected data assimilation step

Finally, we want to evaluate the potential improvements from the correction in a subsequent
4D-Var experiment. From a technical viewpoint, we assume a linear error growth in time.
The model integration for a single time step δt is given by

x 7→ Mo(x) + τδtMml(x), (7)

where τ is the sampling frequency of the ML step. Depending on τ , using the hybrid model
yields up to 25 % reduction in the analysis RMSE.

sampling period 1/τ 1 d 2 d 4 d 8 d no correction
RMSE 0.18 0.20 0.21 0.24 0.24

The linear error growth in time is a limiting factor for a more accurate corrected DA. Ideally,
the NN should be able to predict the model error for short-term forecasts, in particular shorter
than the DA window.
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