Accurate Parameter Estimation for a Global Tide and Surge Model with Model Order Reduction

(L): Xiaohui Wang¹, Martin Verlaan^{1,2}, Hai Xiang Lin¹ (<u>X.Wang-13@tudelft.nl</u>)

> 1.Delft University of Technology 2.Deltares

Joint ECMWF/OceanPredict workshop on Advances in Ocean Data Assimilation 17-20 May, 2021, online meeting

- Research Motivation
- Global Tide and Surge Model
- Parameter Estimation Scheme
- Numerical Experiments and Results
- Conclusions

Research Motivation

Why to do **parameter estimation**?

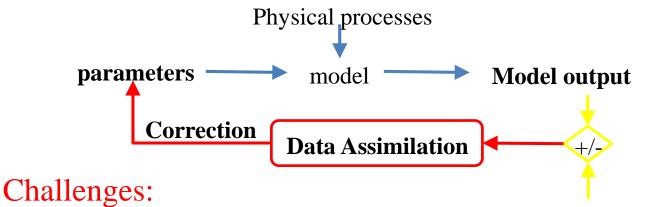
• The **requirement** of the high accurate forecast of tide and surge

 \checkmark Global climate changes are increasing the risk of storm surges, flooding.

 \checkmark Accurate forecasts can substantially help evaluate the risk

- Numerical tide models can provide water level forecast, e.g. GTSM
- Model error remains, e.g. resolution, physical process, uncertain parameters.
- Some measurements (tide gauge & satellite altimetry) can be obtained.

Research Motivation



• Expensive computational cost^[1]

Observations

 \checkmark A large number of model simulations have to be run to find the optimal parameters.

• Huge memory requirement

 \checkmark Two weeks simulation time length leads calibration performance over-fit the observations used.

 \checkmark The long time-series results in huge memory requirement.

✓ **Model order reduction** in time patterns.

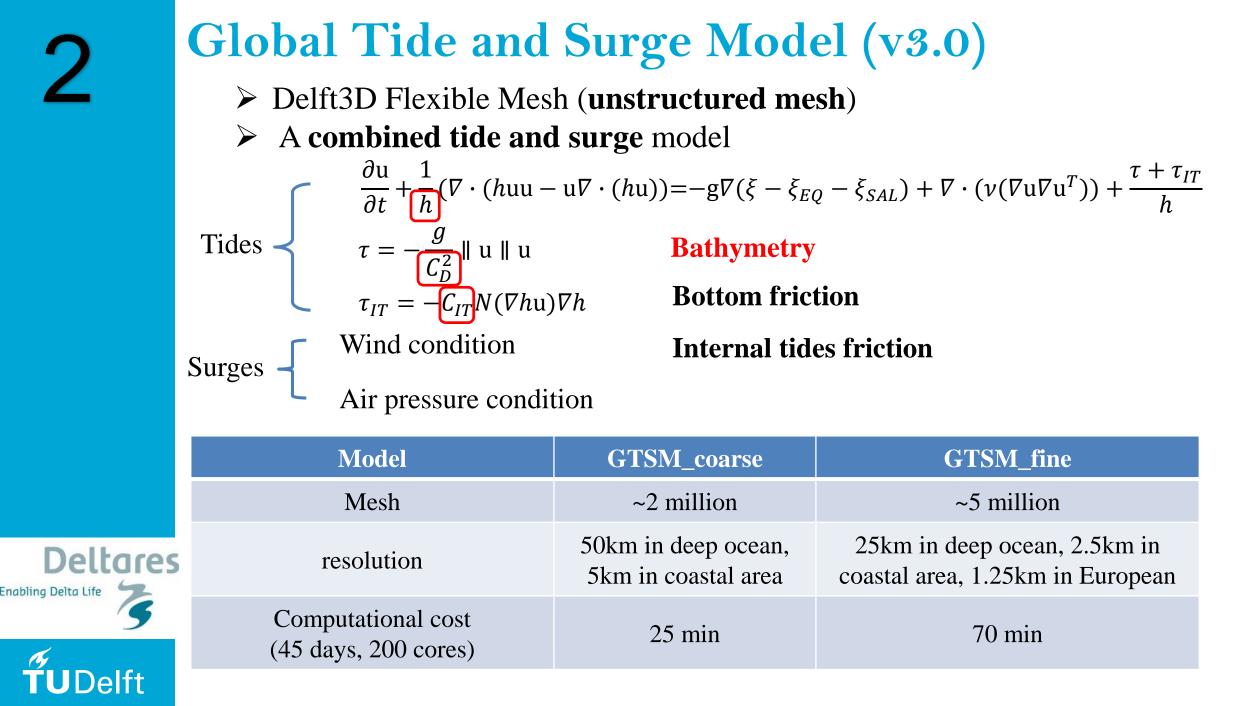
TUDelft

Deltares

Enabling Delta Life

[1] Wang, X., Verlaan, M., Apecechea, M. I., & Lin, H. X. (2021). Computation-efficient parameter estimation for a high-resolution global tide and surge model. *Journal of Geophysical Research: Oceans*, 126, e2020JC016917. <u>https://doi.org/10.1029/2020JC016917</u>

- Research Motivation
- Global Tide and Surge Model
- Parameter Estimation Scheme
- Numerical Experiments and Results
- Conclusions



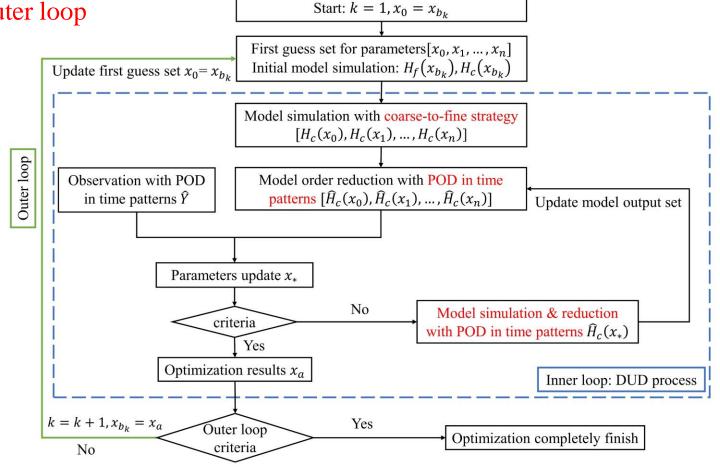
- Research Motivation
- Global Tide and Surge Model
- Parameter Estimation Scheme
- Numerical Experiments and Results
- Conclusions

Parameter Estimation Scheme

- OpenDA software: a generic data-assimilation toolbox
- Basic Algorithm: A derivative-free calibration algorithm Does not use derivative (DUD)
- New developments:
 - **Coarse to fine strategy (Computational time reduction):** $H_f(x) = H_f(x_b) + (H_c(x) H_c(x_b))$

Model order reduction (Memory requirement reduction)

□ Inner-outer loop



Parameter Estimation Scheme

- POD (Proper Orthogonal Decomposition) in time patterns
 - □ reducing the model order by **identifying several modes with the most energies** from a highdimension system and uses these modes as a **lower-dimension subspace approximation**.

$$H_{N_t,N_s}(x) = [h^1(x), h^2(x), \cdots h^{N_s}(x)] \in \mathbb{R}^{N_t \times N_s}, N_t \gg N_s$$
(1)

$$\left\|H_{N_t,N_s}(x) - KH_{N_t,N_s}(x)\right\|_2^2 = \sum_{i=1}^{N_s} \left\|h^i(x) - Kh^i(x)\right\|_2$$
(2)

$$K = U_{N_p} U_{N_p}^T, U_{N_p} \in \mathbb{R}^{N_t \times N_p}, N_p \ll N_t$$
(3)

□ Truncated SVD:

$$H_{N_t,N_s}(x) = U\Sigma V^T, U = [u_1, u_2, \dots, u_{N_t}] \in \mathbb{R}^{N_t \times N_t}$$

$$(4)$$

$$\widehat{H}_{N_p,N_s}(x) = U_{N_p}^T H_{N_t,N_s}(x) \in \mathbb{R}^{N_p \times N_s}$$
(5)

Observation:

$$\hat{Y} = U_{N_p}^T Y \in \mathbb{R}^{N_p \times N_s} \tag{6}$$

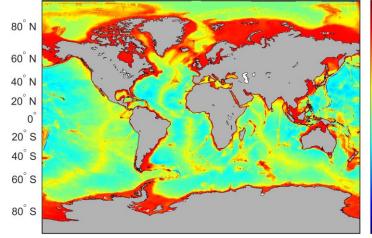
g

- Research Motivation
- Global Tide and Surge Model
- Parameter Estimation Scheme
- Numerical Experiments and Results
- Conclusions

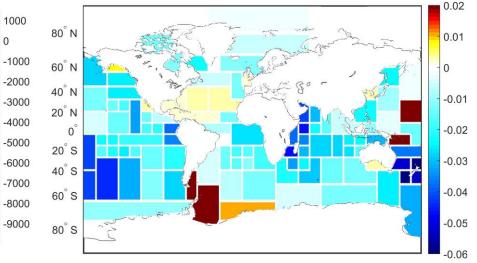
0

Experiment Set-up

- **Observation Network**
 - 1973 time-series from FES2014 dataset ٠
- **Parameter:** Bathymetry (110 subdomains)
 - Uncertainty: 5%
 - Sensitivity test



0° 40° E 80° E 120° E 160° E 160[°] W 120[°] W 80[°] W 40[°] W



160° W 120° W 80° W 40° W 0° 40° E 80° E 120° E 160° E

Name	Simulation time	Time Steps	Outer loop	POD	Truncation size	Data size Before POD	Data size after POD	
EX1	1-14 Jan. 2014	2017	No	No	N/A	3.32Gb	N/A	
EX2	1-14 Jan. 2014	2017	No	Yes	200	3.32Gb	0.33Gb	ſ
EX3	1-31 Jan. 2014	4465	Yes	Yes	200	7.35Gb	0.33Gb	5

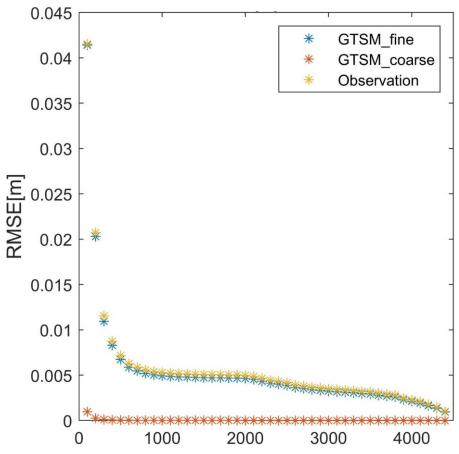
ŤUDelft

4

Numerical Experiments and Results

POD performance analysis

- Projection and reconstruction accuracy
 - Model simulation time: 1-31 Jan. 2014
 - Generate basis matrix U_{N_p} from coarse model output and reconstruct matrix with changed truncation size.
- **RMSE** is decreased with the increasing truncation size.
- **Excellent accuracy** of the reconstructed coarse model.
- □ The reconstructed fine model and observations have similar performance when the truncation size varies.
- □ 200 modes ensure the reconstructed observation error is smaller than the observation uncertainty (0.05m).



POD performance analysis

Deltares

JDelft

Enabling Delta Life

Estimation performance in EX1 and EX2

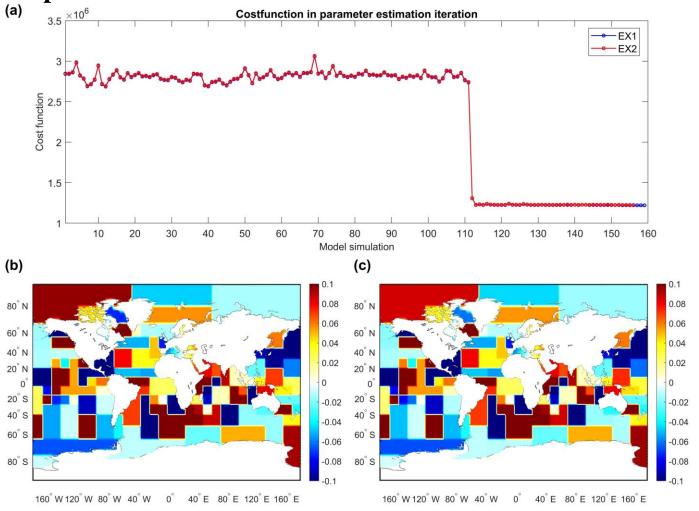


Figure 3: (a) Cost function in EX1 and EX2; (b) Bathymetry changes in EX1; (c) Bathymetry changes in EX2

13

> Parameter estimation results (EX3): CPU time: 12days for 200 cores (57600h)

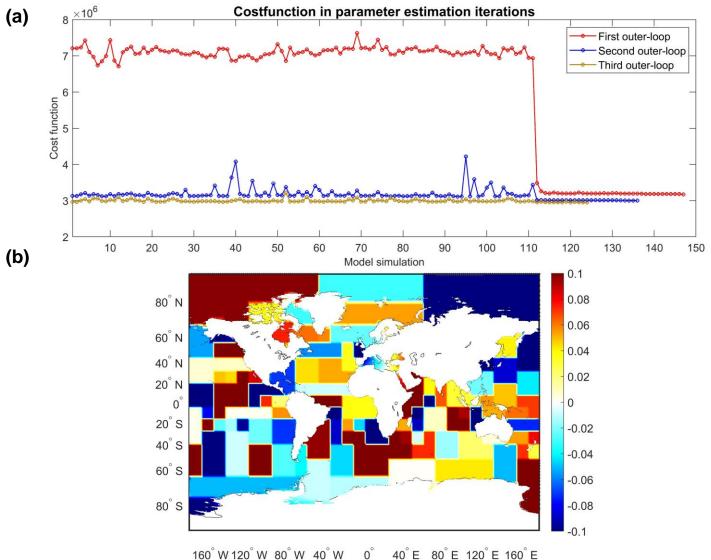


Figure: (a) Cost function for three outer loop iterations of EX3; (b) Final bathymetry changes in EX3;

4

Deltares

Enabling Delta Life

ŤUDelft

Numerical Experiments and Results

Parameter estimation results (EX3)

RMSE	Time period	Initial	EX1	EX3
GTSM	January 1-14	6.47	4.19	4.06
(coarse)	January 15-31	7.14	5.20	4.41
GTSM	January 1-14	5.23	3.49	3.62
(fine)	January 15-31	5.84	4.33	3.66

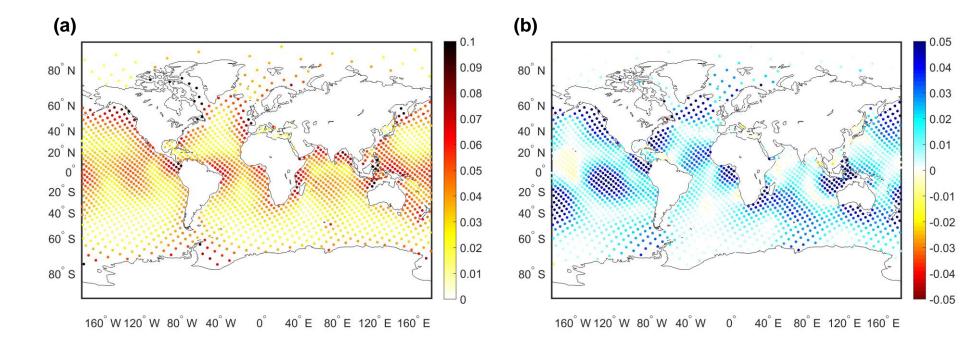


Figure: (a) RMSE between estimated fine grid GTSM in EX3 and FES2014 dataset in January 2014; (b) Difference of RMSE between initial model and estimated model, color blue shows improvement. [unit:m]

Model validation: Monthly Comparison with FES2014 time-series of 2014

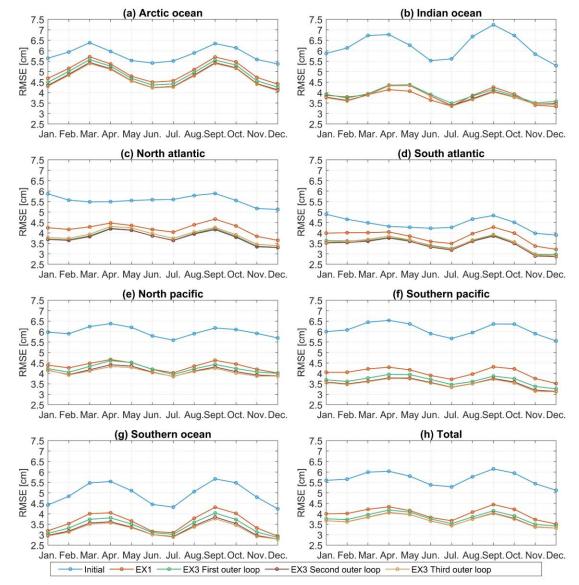


Figure: RMSE between model output and FES2014 dataset in 2014

JDelft

Model validation: Monthly Comparison with UHSLC time-series of 2014

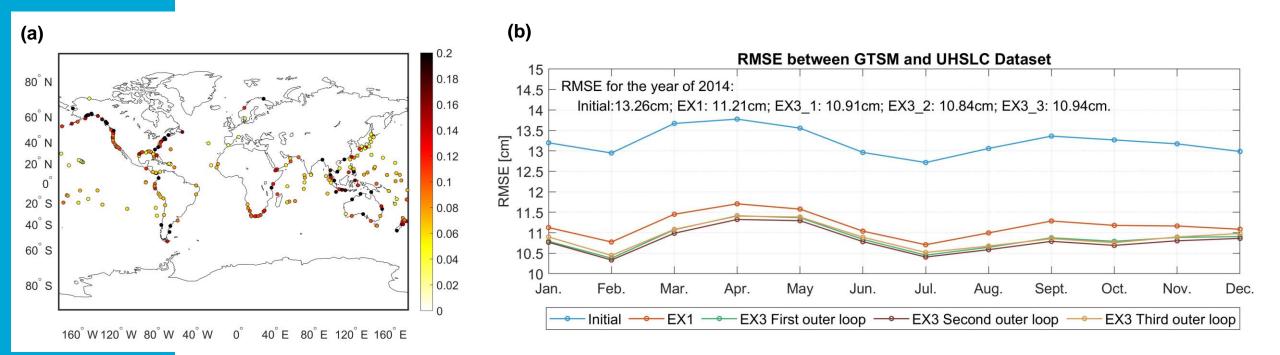


Figure: (a): RMSE between initial fine GTSM and UHSLC dataset in year 2014; (b): RMSE Difference between initial model and estimated model in EX3, color blue shows improvement.[unit:m]

17

- Research Motivation
- Global Tide and Surge Model
- Parameter Estimation Scheme
- Numerical Experiments and Results
- Conclusions

Conclusions

- Model order reduction can significantly reduce the memory requirement for parameter estimation procedure without estimation accuracy loss.
- > Parameter estimation of GTSM benefits from long observation time series.
- An outer-loop can improve the calibration performance for non-linear models or approximate linearization.
- Future work will continue on the estimation of bottom friction for the fine model.

