

National

Weather

Service

Integration of Ocean Data Assimilation System In the NOAA UFS R2O Project

Rahul Mahajan¹, D. Kleist¹
J. Kim^{1,3}, Y-C. Teng^{1,3}, X. Liu^{1,3}, L. Liu^{1,3}, X. Li^{1,3}
G. Vernieres⁴, T. C. Sluka⁴, H. Ebrahimi⁴
J. Zhu^{1,2,5}

¹NOAA/NCEP/EMC, ²CPC, ³IMSG, ⁴JCSDA, ⁵ESSIC/UMD

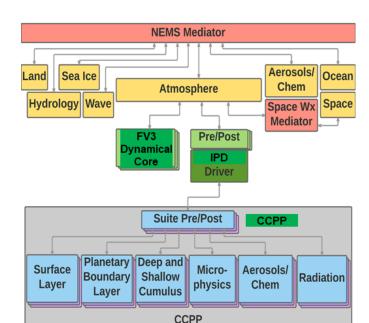
Joint ECMWF/OceanPredict workshop on Advances in Ocean Data Assimilation May 18, 2021

Motivation: UFS-R2O Framework at NCEP/EMC

- Synchronization of NWS forecasting system in UFS R2O project:
 "One System Many Applications"
- UFS coupled model for Atm-Ocean-Ice-[...]: FV3-MOM6-CICE6-WW3
- Unification of the DA under JEDI projects
- Modernization and unification of common utilities: Pre- & Postprocessing, observational data archiving, DA workflow, etc.
- Interface for Observation Data Access (IODA) component of JEDI
- Community-based development and software integration

Overview

- Unified Forecast System
- **Operational Targets for UFS R20**
- Global Ocean Data Assimilation System
- Towards Coupled DA
- Ocean color and biogeochemistry
- **Regional Ocean Data Assimilation**



Unified Forecast System

UNIFIED FORECAST SYSTEM

- NWS UFS system consists of the following community components
 - NEMS for infrastructure
 - CMEPS mediator
 - FV3 dycore with CCPP Physics driver
 - MOM6 ocean model (S2S scales)
 - HYCOM ocean model (weather scales)
 - WW3 wave model
 - CICE5/CICE6 ice model
 - GOCART aerosol model
 - NOAH-MP Land model
- Each component has its own authoritative repository. NEMS infrastructure allows flexibility to connect instantiations of the repositories together to create a coupled model.
- https://ufscommunity.org

Operational Target – FY 2024

- औ
- **₩**\$
- DOL

1

- ☐ Global Forecast System (GFS) v17
- ☐ Global Ensemble Forecast System (GEFS) v13:
 - First fully coupled system from weather to sub-seasonal scales
 - ☐ Integrated GFS and GEFS systems
 - FV3 + MOM6 + CICE6 + WW3 + NOAH-MP
 - ☐ JEDI-based Weakly/Quasi-strongly coupled DA
 - 30+ ensemble members

ž

郊

K

Current UFS-based Coupled Applications

Effects of waves on atmospheric stress at ocean surface

FV3 - CHEM

Atmosphere, aerosols interaction

ADCIRC - WW3

Wave and surge coupling (COASTAL ACT)

FV3 – HYCOM

Hurricane Analysis and Forecast System

HAFS

MOM6 - CICE6

Data Atmosphere, Ocean Ice coupled model for Global Ocean DA System with JEDI-SOCA

NG-GODAS

S2S scales (25 km atm, ¼ deg ocean and ice, ½ deg waves)

GFS v18 / GEFS v13

Atmosphere

- FV3 dynamical core
- GFS Physics with GFDL microphysics
- CCPP physics driver
- C384 (~25km), 64/127 levels

Ocean

- MOM6 Modular Ocean Model
- ¼ degree tripolar grid, 75 hybrid levels
- OM4 Set up [Adcroft, 2019]

Waves

- WAVEWATCH III
- ½ degree regular lat/lon grid
- ST4 Physics [Ardhuin, 2010]

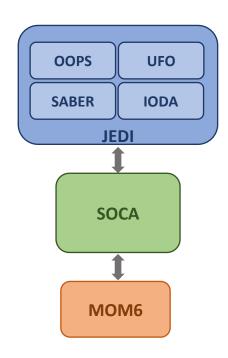
Ice

- CICE6 Los Alamos Sea Ice Model
- 1/4 degree tripolar grid (same as ocean)
- 5 thickness categories

Driver/Mediator

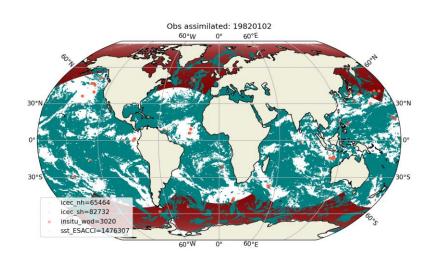
- NEMS driver
- CMEPS mediator

https://github.com/ufs-community/ufs-weather-model



Sea-ice Ocean & Coupled Assimilation [SOCA]: JEDI Encapsulation of MOM6 (& Sea-ice)

- SOCA is the JEDI encapsulation of MOM6 and Seaice
- □ SOCA implements the interfaces, methods, applications and configuration that the abstract components of JEDI need specifically for models using the MOM6.
- ☐ SOCA provides objects for *Geometry, State* and *Increment, IO* access, *Variable Changes,*Interpolation to observation locations, the Tangent Linear and Adjoint and the ability to advance the model.
- SOCA also provides framework for *unit testing* of the interface as well as *regression testing*, example configuration scripts to run various applications (e.g. 3DVar, Forecast, etc.)

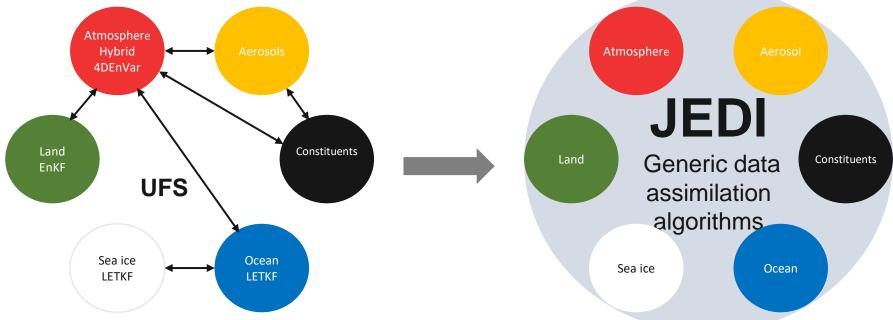


NG-GODAS Scout Run (J. Kim et. al)

- DATM-MOM6-CICE6: 1-degree in JEDI-SOCA 3DVar framework
- 30 year ocean reanalysis at ¼ degree
- Provide ocean ice benchmarks for UFS S2S GEFS v13

Obs type	Date
ADT	1993-2020 (NESDIS)
Satellite SST (AVHRR)	1981-200208 (ESACCI L3U), 200208-201811 (NESDIS L3U)
Insitu (T&S)	1979-2020 (WOD)
SSS	SMOS ESA L2 (2010-2020), SMAP RSS/JPL L2 (2015-2020)
Sea ice Conc	NSIDC L3 SSMR, SSMI (1979-200305), EMC L2 (200306-2020 SSMI, SSMIS)

Over 1 Million Observations per day

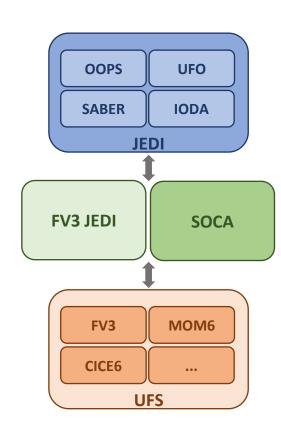

郊

K\$

Towards Coupled Data Assimilation

Up to now data assimilation systems have been developed in parallel for the different models, with various levels and approaches for coupling between data assimilation and model components

model components.



Coupled DA Design

- By design the **JEDI generic** components know nothing about the **specific model** (grid or variables) so an **interface** is needed to sit between the JEDI core components and the models themselves.
- Develop **separate interfaces** specific to a model component (atmosphere, ocean, sea-ice, etc.)
- Behavior of the interfaces are controlled through the configurations, with no hardwired variables.

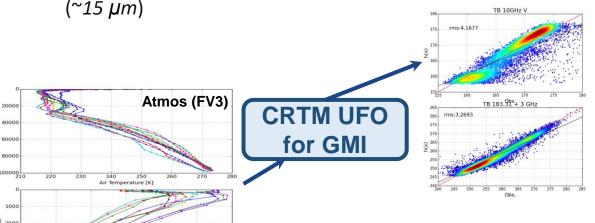
Coupled Observation Operators

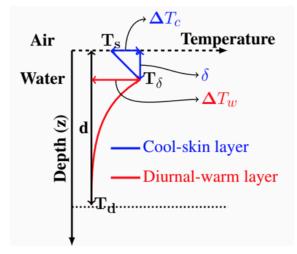
- The Unified Forward Operator (UFO) in JEDI introduces standard interfaces between the model and observation world.
- Observation operators are independent of the model, ease sharing, and are easily configurable for coupled data assimilation.

Uncoupled Ocean Only Observation Ocean SST SSTo Model Observation State Operator SST, Simulated SST Observation

Coupled Ocean-Atmosphere Ocean Observation SST $\mathsf{T}_{\mathsf{rad}}$ Observation Model Operator State SST **Atmos** Simulated

遊


*


Coupled Observation Operators

(Examples courtesy Hamideh Ebrahimi/JCSDA)

- NCEP/EMC (NSST) and NASA GMAO (Akella et. al) have both developed radiance-driven SST through GSI. Multi-domain UFO development is already underway in JEDI (Ebrahimi, JCSDA).
- For MW channels, there is sensitivity of the observation to the temperature at some sub-skin depth (1-30 mm)

IR channels are are generally sensitive to skin temperature

Schematic of the details of near-surface T(z) variation, $T(z) = T_d + \Delta T_w(z) - \Delta T_c(z)$.

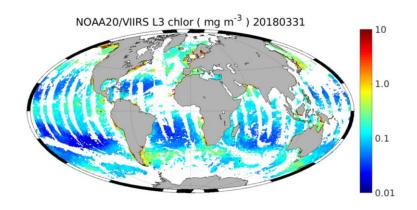
3000

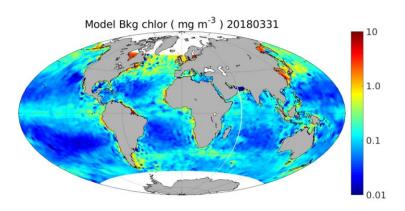
Ocean (MOM6)

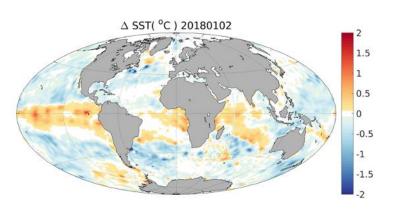
NG-GODAS + BLING BioGeoChemistry

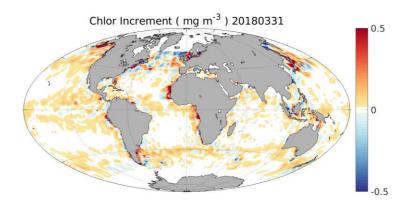
- 1. To exploit data-driven and data-assimilating techniques for more-accurate biogeochemical modeling of coastal and open ocean environments
- 2. Support NOAA/NCEP's operational weather forecasts by improving ocean state initialization in the UFS through the ingestion of ocean color data and integration of ocean biophysical feedback
- 3. Build NCEP's ecological forecast capabilities for monitoring critical changes and "tipping points" in coastal ecosystems

Approach:


- 1. Include *chlorophyll a*nd *Ocean Color* products from VIIRS platforms in the **JEDI/***UFO* and **JEDI/SOCA**
- 2. Include BGC (BLING) modules in Modular Ocean Model 6 (MOM6);
- 3. Evaluate the model's ecological forecast skills and feedback to ocean physics.




쏦


*

JEDI/SOCA with UFS + BLING

UFS Regional Ocean DA for HAFS

- Build Hybrid Ocean DA for HAFS in UFS-GODAS and JEDI/SOCA framework to replace RTOFS
- 2. Ingest high resolution ocean observations e.g. Gliders and HF-Radar
- 3. High resolution global model spin-up for downscaling nesting applications

Approach:

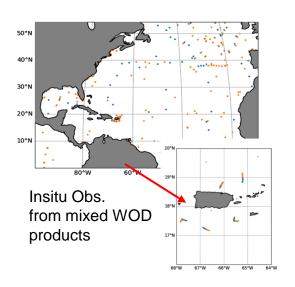
- 1. Leverage Regional MOM6 ocean capabilities from JEDI/SOCA
- 2. Configure and populate JEDI/IODA observation database with glider and HF-Radar
- 3. M6 HAT10 model and experiment

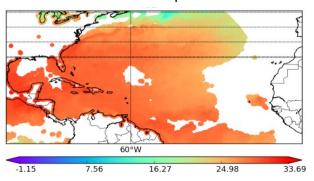
HAT10 domain and input configuration

Forcing: CORE/IRA55

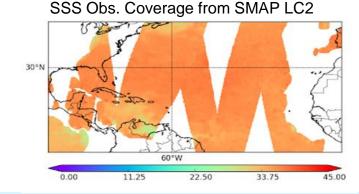
- MOM6 restart files: Climatology from SODA3
- Model resolution: 1/12 degree (1135x633x50 grid cells)
- **Boundary Condition: Rutgers-developed OBC options**
- Forcing files: GFS

Current Experiment configuration: 1/12-degree resolution

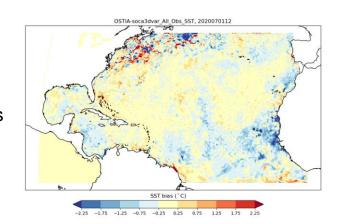

IC & BC: Climatology from SODA3, Rutgers-developed OBC options

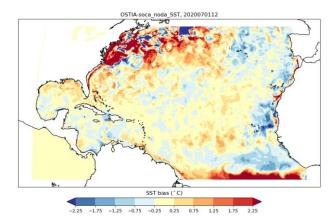


Regional ODA Experiment: Current Obs


In addition to glider data

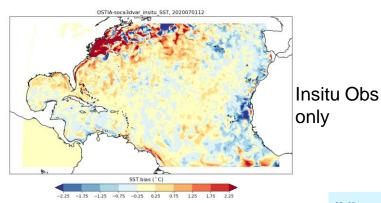
GOES-16/17 ABI SST product


- currently assimilating ~ 300,000 insitu obs. &
- ~20,000 glider obs. per cycle
- thinning & binning work in progress

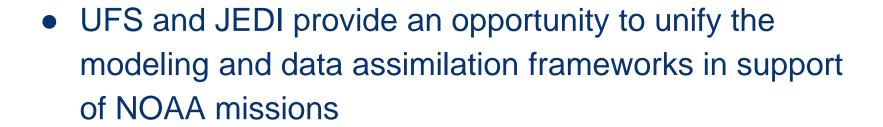


JEDI/SOCA 3DVar: SST Validation v/s OSTIA

all obs



no DA


PRELIMINARY

Concluding Remarks

 Leveraging several efforts within the coupled modeling community and JEDI for coupled data assimilation

