Joint ECMWF/OceanPredict workshop on Advances in Ocean Data Assimilation

Contribution ID: 2

Type: Poster presentation

Lessons learnt by applying an EnOI system to a gridded observational product

Ensemble Optimal Interpolation (EnOI) is used by several groups for ocean forecasting and reanalysis. Here, EnOI is applied to a gridded observational product -mapping Argo and satellite data to produce weekly analyses on a global 1/10 degree grid. Starting with a configuration that has long been applied under Bluelink for forecasting and reanalysis, many shortcomings quickly became evident. Analyses included small-scale noise, unresolved by observations. The locations of observations were clearly evident, particularly altimeter tracks, indicating over-fitting. Background and analysis innovations were larger than expected, and grew with time, signally poor constraint. When such analyses are used to initialise a dynamical model, the model seems to "hide"many of these characteristics -and in the resulting daily-mean fields that most practitioners analyse to assess performance, most of the problems are not evident. But in the absence of a model, these features are disturbingly obvious. What was the cause? The ensembles all included noisy anomalies and did not include the necessary scales of interest. The localising length-scales were too short for the observing system, and there was insufficient data to really constrain the resolved scales. The solution was to use a much larger ensemble (~400 members compared to ~100), longer localising length-scales (~1000 km instead of ~200 km), and damping towards climatology (to make up for insufficient observations). The resulting analysis system seems to out-performs most dynamical forecast systems -both in terms of analysis innovations (i.e., it fits the observations more closely), and persistence forecasting (i.e., a persisted analysis seems to "beat" most dynamical forecasts). Most EnOI-based studies use a modest ensemble size (typically 100 members), poorly considered ensemble generation, and localisation that is too short. Perhaps our EnOI-based systems can do much better, if configured with care.

Which theme does your abstract refer to?

Development and assessment of data assimilation in forecasting applications (global and regional)

Primary author:OKE, Peter (CSIRO)Presenter:OKE, Peter (CSIRO)Session Classification:Poster session 2

Track Classification: Data assimilation methods