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• Machine Learning / Deep Learning can be seen as a particularisation of 
standard Data Assimilation methodology, what is the current excitement 
about?

• At least two reasons:

1. Technically the explosion of ML/DL applications has produced an 
ecosystem of efficient, easy to use open source software that can be 
easily repurposed for specific applications: “the democratisation of 
Machine Learning”

2. In the Earth Sciences, it has brought into prominence the idea that the 
current and ever-increasing wealth of geophysical observations can 
be directly used to improve/extend/correct/replace current 
forecast models
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Data Assimilation and Machine Learning
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• Improving forecast models can be considered one of the most urgent 

requirements to advance predictive skill, on all time scales

• Traditionally, DA algorithms have used a perfect model assumption and 

aimed at reducing random initial conditions errors: this brings steady 

progress up to ~2 weeks, but not much is visible beyond two weeks

• Can we deploy ML to help break the 2-week Lorenz predictability barrier?  
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Model Error: Atmosphere
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• Improving forecast models can be considered one of the most urgent 

requirements to advance predictive skill also in the Ocean!
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Model Error: Ocean

From Hao Zuo

NOAA drifter climatology ORAS5 1985-2012.
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• In Ocean Modelling one of the main sources of errors come from insufficient 

resolution -> need to account for unresolved physical processes

• This problem has been tackled by using ML tools (CNN, DNN, RVM) to build 

offline data-driven parameterizations of the unresolved dynamics for a fully 

observed system (Bolton and Zanna, 2019, Zanna and Bolton, 2020, Kutz, 

2017, Ling et al., 2016)
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Model error in Ocean DA and prediction

From: Bolton and Zanna, 2019
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• A proof of concept with a simplified coupled Ocean-Atmosphere model has 

been given in Brajard et al., 2020, to obtain an online data-driven 

parameterizations of the unresolved dynamics using incomplete and noisy 

observations (i.e., using data assimilation for state estimation)
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Model error in Ocean DA and prediction

From: Brajard et al., 2020
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• Ideally we would like to estimate the state and the model consistently and 

simultaneously, i.e. to solve the full Bayesian estimation problem (Bocquet et al., 

2020):

𝑝 𝒙0:𝐾 , 𝐀 𝒚0:𝐾 =
𝑝 𝒚0:𝐾 𝐀, 𝒙0:𝐾 𝑝 𝒙0:𝐾 𝐀 𝑝 𝐀

𝑝 𝒚0:𝐾

• In low-order geophysical systems it has been shown to be possible to solve this problem 

(e.g. Brajard et al., 2020, Bocquet et al., 2020, Bocquet et al., 2019) using a coordinate 

descent approach:
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Data Assimilation and Machine Learning

From: Farchi et al., 2020
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• How can we adapt this general recipe to operational NWP and Climate 

prediction? There are two issues:

1. Typically we do not have enough time to iterate to convergence the DA 

and ML steps in operational NWP;

2. We have a much more complex model, but typically a very good model!

• These two features of the NWP/Climate prediction system point to two ways 

of attacking the combined state-model estimation problem in a data 

assimilation framework:

1. Model Parameter Estimation

2. Model Error Estimation and Correction
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Data Assimilation and Machine Learning
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• In Model Parameter estimation we start from a fundamental assumption: 

“the model is structurally sound, model errors (mainly) arise from incorrect settings of its 

parameters (or pdfs of these parameters, in a stochastic model framework)”.

• This assumption has the big advantage that it drastically reduces the hypothesis 

space of our ML model to that of the model parameters(~O(102))

• Traditionally, these parameters are hand-tuned comparing short and long forecasts 

(and ensemble of forecasts) to observations/analyses. This is computationally 

expensive and labour intensive.

• Assuming the model parameters have a strong correlation with the observed 

variables (Identifiability condition: Navon, 1997), we can add them to the control 

vector of the analysis (Augmented Control Vector, see Ruiz et al., 2013, for a 

review), both in Ensemble and Variational DA 
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Combining DA and ML: Model Parameter Estimation
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• Augmented Control Vector in 4DVar:

𝐽4𝐷𝑉𝑎𝑟 𝒙0, 𝒑 = 𝐽𝐵 + 𝐽𝑃 + 𝐽𝑂 = 
1

2
𝒙0 − 𝒙0

𝑏 𝑇
B−1 𝒙0 − 𝒙0

𝑏 +
1

2
𝒑 − 𝒑𝑏

𝑇
Bp
−1 𝒑 − 𝒑𝑏 +

1

2
σ𝑖=0
𝑁 𝐻𝑖°𝑀𝑖(𝒙0; 𝒑) − 𝒚𝑖

𝑇Ri
−1 𝐻𝑖°𝑀𝑖(𝒙0; 𝒑) − 𝒚𝑖

• (p) is the set of model parameters (or fields of those) that are estimated together with 

the state. (This could also be applied to uncertain parameters of the forward model 

H)

• This approach has been around in atmospheric data assimilation since at least the 

mid ’90s, but results have been inconsistent in realistic applications. 

• With the current and projected wealth of available observations (ECMWF DA ingests 

~40 million obs every 12h) time is ripe for revisiting this idea   
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Combining DA and ML: Model Parameter Estimation
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Example: Online Estimation of the “standard deviation of subgrid 

orography” in the IFS Orographic Drag scheme (S. Massart, ECMWF)
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Combining DA and ML: Model Parameter Estimation

• Identifiability: Surface pressure is 

sensitive to orography, 4DVar can 

constrain the parameter through surf. 

press. observations

• Preliminary results show improved 

surface pressure forecast skill! 

Analysis increments of estimated StDev orography (left)

Cross section of default (black) and estimated (red, mean + spread) parameter values (right)
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• In Model Parameter estimation we have made the assumption that a perfect model 

is a model with optimal parameter values; 

• However models (model parameterisations) have also non-negligible structural 

uncertainties (e.g., BL turbulence, cloud convection), which cannot be resolved by 

tuning of the closure parameters;   

• A different approach is to abandon the perfect model assumption and consider the 

evolution of the state given by the knowledge-based model plus a residual model 

error component:

𝒙𝑘 = 𝑀𝑘 𝒙𝑘−1 + 𝜂𝑘 𝒙𝑘−1 = 𝑀𝑘 𝒙𝑘−1 +𝑀𝑘
𝑀𝐿 𝒙𝑘−1

• In Data Assimilation this general idea is called weak constraint 4DVar (Sasaki, 1970)
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Combining DA and ML: Model Error Estimation and Correction
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• The ECMWF version of WC-4DVar works by estimating (“learning”) a constant 

model error tendency over the assimilation window (12 hours)

• The background (and first guess) model error is the previous window’s estimate (we 

do not have a predictive model of model error!)

• This means that our model error formulation targets errors which are slowly evolving 

on the timescale of the assimilation window (ie, 12 hours) and large scale with 

respect to typical background errors (“errors of the day”)

• These insights are the basis of the success of the latest WC-4DVar implementation 

in dealing with stratospheric model biases (Laloyaux et al., 2020a, b)
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Weak Constraint 4D-Var
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Weak Constraint 4D-Var

From Laloyaux et al, 2020b

Mean first-guess departure with respect to GPS-RO temperature retrievals

• WC-4DVar gradually learns a 

model error tendency 

correction and applies it 

during the assimilation cycle

• WC-4DVar is an online 

machine learning algorithm 

for model error estimation 

and correction
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Weak Constraint 4D-Var

• Current version of WC-4DVar is a step change wrto previous versions, but it is not the end 

of the story:

• WC-4DVar reduces stratospheric fcst temperature bias ~ completely against BC corrected obs

(radiances), by 30-40% against non-bias corrected obs (Radiosondes, GPS-RO)

• Current WC-4DVar has little impact on wind systematic errors

• Current WC-4DVar is only active in the stratosphere (above ~100hPa). Letting it loose on full 

atmospheric column leads to some forecast skill degradation in troposphere
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Combining DA and ML: Model Error Estimation and Correction
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What can Machine Learning bring to the problem of model error identification and correction?

• Basic idea: Train an Artificial Neural Network to “learn” the deterministic. predictable part of 
model error 

• The most direct way is to train the ANN on a database of observation-background (O-B) 
departures, choosing an ~ homogeneous, dense and unbiased observing system GPS-RO

From P. Laloyaux and T. Kurth
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Combining DA and ML: Model Error Estimation and Correction

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
18

• The other possibility is to train the ML model on a database (fixed or rolling) of analysis 
increments, again under the assumption that the learnable part of the increments is due to 
systematic model deficiencies

• This idea is not new in Data Assimilation, e.g. Dee, 2005, proposed an online version of 
this idea: 

“In the presence of bias, therefore, certain components of the increments are systematic and 
therefore predictable. … Provided the predictable part of the increment can be attributed to 
model errors, the algorithm

𝐝𝐱𝑘
𝑝
= 𝐟𝑘 𝐝𝐱𝑘−𝐿, … , 𝐝𝐱𝑘−1 (43)

𝐝𝐱𝑘 = 𝐊𝑘 𝐲𝑘 − 𝐡 𝐱𝑘
𝑏 − 𝐝𝐱𝑘

𝑝
(44)

will correct the model background and produce unbiased analyses.”
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Combining DA and ML: Model Error Estimation and Correction
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• This approach ahs been tested in a low order 2-level, 1600 variables QG model (Farchi et 
al., 2021)

• The trained ANN can explain ~70% of the model error variance and when used in forecast 
mode to correct model errors can ~double the predictability horizon of the forecasts!

• When the trained ANN is used in the DA cycle only, it reduces RMS analysis errors by 
~25%

• How relevant are these amazingly good results for operational-scale assimilation and 
modelling systems?   

Training and test curves for the ANN Evolution of the fcst RMSE 

From A. Farchi
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Combining DA and ML: Model Error Estimation and Correction
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• This approach has also been demonstrated in the operational version of the ECMWF IFS, initial 

results are available in Bonavita and Laloyaux, 2020

• The size of the state vector is O(1010). Even though model error has much lower effective dimension, 

a primary design consideration for the ANN has been to reduce its size 

• This led us to define a set of predictors made up of the concatenation of climatological predictors 

(time of day, month, lat, lon) and the vertical columns (137 levels) of the model first guess msin

prognostic variables of the model (t, lnsp, vo, div, q).     

• This choice to split the 3D regression problem into a 1D x 2D problem is similar to having a 

separable representation of a 3D covariance matrix and can be justified by two considerations:

1. We can consider the atmospheric flow to be subject to homogeneous dynamics and 
heterogeneous forcings;

2. Physical parameterisations are computed and applied over model columns.
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Combining DA and ML: Model Error Estimation and Correction
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• Dense Neural Network with Relu

activation

• Three layers with nonlinear 

activations give best results: 

problem with only moderate 

nonlinearities

• Dropout layers used to control 

overfitting, input/outputs pre-

normalised for training, Adam 

minimiser

• Number of trainable parameters 

~6*104, size of training dataset ~106

From Bonavita & Laloyaux, 2020
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Combining DA and ML: Model Error Estimation and Correction
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• So what happens when we use this trained Neural Network to correct model errors inside 
the data assimilation system of the operational IFS?

• This work focussed on two different configurations: 

a) Use the NN model errors instead of the Weak Constraint 4D-Var model errors (NN_SC in the 
following); 

b) Use the NN model errors as a first-guess for the Weak Constraint 4DVar (NN_WC)

• Baseline configuration was the currently operational version of Weak Constraint 4D-Var at 
full resolution (T1279, ~9km grid spacing) (WC) and the previously operational Strong 
Constraint 4D-Var (SC)
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Model Error Estimation and Correction in the IFS: Mean errors
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Globally-averaged Mean Temperature Correction Globally-averaged Obs-Fg Mean Difference

TEMP

GPSRO

WIND

From Bonavita & Laloyaux, 2020
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Model Error Estimation and Correction in the IFS: Random errors
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Globally-averaged Observation-First Guess StDev norm. diff.

TEMP WIND

Note: 100% Baseline is current operational Weak Constraint 4D-Var

From Bonavita & Laloyaux, 2020
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Model Error Estimation and Correction in the IFS: Forecast Skill
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• ANN in combination with Weak Constraint 4DVar improves the fit of observations to the 
model, both in the mean and in the random component.

• What can the ANN bring to forecast skill?

From Chrust, Bonavita et al., in preparation

Improvement

Degradation
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Model Error Estimation and Correction for Ocean DA
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➢ The IFS examples of dealing with model error in DA are based on:

1. Conceptually separating predictability errors, which we model through ensemble DA, and 

systematic model errors which have longer (in time and space) decorrelation lengths and are 

dealt with by a model error term in the cost function

2. Estimating and correcting systematic model errors with WC-4DVar or hybrids of WC-4DVar 

and Machine Learning

➢ Wrto error scale separation, similar ideas have been proposed in the Ocean DA literature, 
e.g. dual (or multiple) B matrix in 3DVar (Mirouze et al., 2016, Lin et al., 2015) 

➢ Mirouze et al., 2016 find that “The main impact of the dual length scale formulation can be 
seen on the bias of the innovations”, which is significantly reduced. This results is 
interpreted as coming from the “the usefulness of fatter tails in the background error 
correlation functions”

➢ Another interpretation is that these longer-range errors come from model/boundary 
conditions forcing and thus could be cured in terms of corrections to the model/BC error 
tendencies instead of corrections to the initial state
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Model Error Estimation and Correction for Ocean DA
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➢ Interestingly, in NEMOVAR implementations the analysis increments are applied as an 
additional forcing term to the prognostic equations ((IAU; Bloom et al.,1996) 

➢ This is similar to how model error estimates from WC-4DVar are used in the DA cycle

➢ Additionally, there is an explicit treatment of slow-evolving model biases in NEMOVAR 
based on Balmaseda et al., 2007, Mogensen et al., 2012 where the model bias is 
parameterised as:

𝐛𝑐 = ҧ𝐛 + 𝐛𝑐
′ (1)

𝐛𝑐
′ = α𝐛𝑐−1

′ − 𝐀𝛿𝐱𝑐−1
𝑎 (2)

➢ Model bias computed as sum of an a-priori (offline) bias term ( ҧ𝐛), which contains seasonal 
dependencies, plus an online term (𝐛𝑐

′ ) which is updated based on the previous analysis 
increments  

➢ The bias correction is then used to modify the tendencies of the nonlinear model in the DA 
cycle, as in WC-4DVar!
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Take-home Messages
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➢ We are in the Big Data Era! There is an unprecedented and rapidly growing amount of 

geophysical data ready to be used (at ECMWF we use ~80 million obs a day in 4DVar: 

that is less than 5% of the total amount of obs that reach the building every day!)

➢ This suggests that we have enough data not only to improve the initial state, but also the 

models (both forecast model and forward models)

➢ In atmospheric DA we are already on this path, using WC-4DVar to correct model 

systematic errors in the stratosphere. 

➢ WC-4DVar to tackle systematic errors in the troposphere: prospects look good, both with 

pure WC-4DVar and with a hybrid Machine Learning-4DVar approaches

➢ Other applications of ML are also gaining traction in DA-NWP: model parameter 

optimisation, correcting model errors in extended/seasonal/climate prediction, observation 

operators etc

➢ All these ideas are very relevant to Ocean DA because problems are similar in nature and 

so similar methodological solutions can be successfully applied   
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Thank you for your attention!
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ECMWF-ESA Workshop on ML for ESOP,  5-8 October 2020 

(https://events.ecmwf.int/event/172/; Bonavita et al., 2021, BAMS)

ESA-ECMWF Workshop on ML for ESOP,  15-18 November 2021

https://events.ecmwf.int/event/172/
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Thanks for your attention!
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