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Standard Kalman Filter

Å In the Overview of Assimilation Methods lecture we have seen that, assuming all errors have 

Gaussian statistic, the posterior (i.e., analysis) distribution ὴ(●|◐) can also be expressed as a 

Gaussian distribution:

ÅKalman Filter methods try to find the mean and covariance of this posterior 

distribution

ÅNote that, under this Gaussian assumption, knowing the mean and covariance of       

ὴ(●|◐) means knowing the full posterior pdf
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Standard Kalman Filter

ÅLet us start with a simple univariate example: 

Assume we are analysing a single state variable x, whose errors are zero mean and 
Gaussian distributed around its background forecastxb:

We have one observation of the state variable, also with Gaussian errors:

Applying Bayes theorem we find:

Comparing to a standard Gaussian distribution: 

we see that the posterior distribution is also Gaussian with mean and variance: 
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Standard Kalman Filter

ÅA simple univariate example: 

Introducing the Kalman gain: ὑ the equations for the mean and variance can 

be recast as:

The posterior variance is thus reduced(1-K<0 ) with respect to the prior (background) 

variance, while the posterior mean is a linear, weighted average of the prior and the 

observation.
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Standard Kalman Filter

Å These Kalman Filter analysis update equations can be generalised to the multi-dimensional 

and multivariate case (Wikleand Berliner, 2007; Bromiley, 2014): 

Å These are the same update equations obtained in Assimilation Algorithms (1).  

Å In that context they were derived without making assumptions of Gaussianity, but looking for 

the analysis estimate which had the minimum error variance and could be expressed as a 

linear combination of the background and the observations (we called it the BLUE, Best 

Linear Unbiased Estimate). Linearity of observation operator and model was invoked.  

Å If the background and observations are normally distributed, the KFrupdate equations give 

the mean and the covariance of the posterior distribution. Under these hypotheses the 

posterior distribution is also Gaussian, so we have completely solved the problem! 
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Standard Kalman Filter

Å In NWP applications of data assimilation we want to update our estimate of the state and its 
uncertainty at later times, as new observations come in: we want to cyclethe analysis

Å For each analysis in this cycle we require a background xb
t (i.e. a prior estimate of the state 

valid at time t)

Å Usually, our best prior estimate of the state at time t is given by a forecast from the preceding 
analysis at time t-м όǘƘŜ άōŀŎƪƎǊƻǳƴŘέύ:

xb
t = M(xa

t-1)

Å What is the error covariance matrix (=> the uncertainty) associated with this background?



Standard Kalman Filter

Å What is the error covariance matrix associated with the background forecast?

xb
t = M(xa

t-1)

Å Subtract the true state x* from both sides of the equation:

xb - x*
t = ʀbt = M(xa

t-1) - x*
t

Å Sincexa
t-1 = x*

t-1 + ʀat-1 we have:

ʀbt = M(x*
t-1 + ʀat-1) - x*

t   

M(x*
t-1) + Mʀat-1 - x*

t  =

Mʀat-1 + ʂt

Å Here we have defined the model error ́ t = M(x*
t-1) - x*

t

Å We will also assume that no systematic errorsare present in our system 

< aʁ > = <́ > = 0  =>     < bʁ > = 0



Standard Kalman Filter

Å The background error covariance matrix will then be given by:

<ʀbt (ʀbt)
T> iPb

t = <( Mʀat-1 + ʂt) (Mʀat-1 + ʂt)
T> =

M<ʀat-1 (ʀat-1)
T> MT + <ʂt (ʂt)

T> =

MPa
t-1 MT + Qt

Å Here we have assumed< ʀat-1 (ʂt )
T> = 0 and defined the model error covariance 

matrixQti<ʂt (ʂt)
T>

Å Note how the background error is described as the sum of the errors of the 
previous analysis propagated by the linearisedmodel dynamics to the time of the 
update (MPa

t-1 MT) and the new additive errors introduced by the model integration
(Qt)

ÅWe now have all the equations necessary to propagate and update both the state 
and its error estimates



Standard Kalman Filter

Propagation
Update

t-1 t t+1xa
t-1

Pa
t-1

New Observations

3. Compute the Kalman Gain   

K= Pb HT(HPb HT + R) -1

4. Update state estimate       

xa
t = xb

t + K(y - H(xb
t))

5. Update state error estimate 

Pa
t = ( IɀKH)Pb

t (IɀKH)T + KRKT

1. Predict the state ahead           

xb
t+1 = M(xa

t)

2. Predict the state error cov.

Pb
t+1 = MPa

t MT + Qt+1

Propagation

1. Predict the state ahead           

xb
t = M(xa

t-1)

2. Predict the state error cov.

Pb
t = MPa

t-1 MT + Qt

xa
t

Pa
t

xb
t

Pb
t

Xb
t+1

Pb
t+1



Standard Kalman Filter

Å Under the assumption that the model M and the observation operator Hare linear 

operators (i.e., they do not depend on the state x), the Kalman Filter produces an 

optimalsequence of analyses(xa
1, x

a
2,é, x

a
t-1, x

a
t)

Å The KF analysis xa
t is the best (minimum variance) linear unbiased estimate of the 

state at time t, givenxb
t and all observations up to time t(y0,y1ȟȣȟyt).

Å Note that Gaussianity of errors is not required. If errors are Gaussian the Kalman 

Filter provides  the correct posterior conditional probability estimate (according to 

.ŀȅŜǎΩ [ŀǿύΣ ƛΦŜΦ Ǉόxa
t| xb

0; y0,y1ȟȣȟyt). This also implies that if errors are Gaussian 

then the state estimated with the KF is also the most likely state (the mode of the 

pdf).



Extended Standard Kalman Filter

Å The extended Kalman Filter (EKF) is a non-linear extension of the Kalman Filter 
where the model and observation operators are not required to be linear 
operators (independent of the state) as in the standard KF:

ὁ H ὀ╫ Ⱡ▫ (EKF) ὁ ἒὀ╫ Ⱡ▫ (KF)

ὀἪ M ὀ╪ (EKF) ὀ╫ Ἑὀ╪ (KF)

Å The covariance update and prediction steps of the KF equations use the Jacobians 
of the model and observation operators, linearized around the analysed/predicted 
state, i.e.:

M=
M
●

(xa,t-1),    H =
H
●

(xb,t)

Å The EKF is thus a first order linearization of the KF equations around the current 
state estimates. As such it is as good as a first order Taylor expansion is a good 
approximation of the nonlinear system we are dealing with.

Å A type of EKF is used at ECMWF in the analysis of soil variables (Simplified 
Extended Kalman Filter, SEKF). More on this later in the dedicated lecture.



Kalman Filters for large dimensional systems

Å The Kalman Filter (standard or extended) is unfeasible for large dimensional 

systems

Å The size N of the analysis/background state in the ECMWF 4DVar is O(108): the KF 
requires us to store and evolve in time state covariance matrices (Pa/b) of O(NxN)

ü ¢ƘŜ ²ƻǊƭŘΩǎ ŦŀǎǘŜǎǘ ŎƻƳǇǳǘŜǊǎ Ŏŀƴ ǎǳǎǘŀƛƴ Ϥ мл15 operations per second

ü An efficient implementation of matrix multiplication of two 108x108 matrices 
requires ~1022 (O(N2.8))operations: about 4 months on the fastest computer!

ü Evaluating  Pb
t = MPa

t-1 MT + QkǊŜǉǳƛǊŜǎ нϝbҒнϝмл
8 model integrations!

Å A range of approximate Kalman Filters has been developed for use with large-
dimensional systems.

Å All of these methods rely on some forms of low-rank approximation of the state 
covariance matrices of background and analysis errors.



Kalman Filters for large dimensional systems

Å Let us assume that Pa/b has rank M<<N όŜΦƎΦ aҒмллύΦ όǊŀƴƪҐŘƛƳΦ ƻŦ ǾŜŎǘƻǊ ǎǇŀŎŜ 

spanned by its columns/rows)

Å In this case we can write Pb= Xb(Xb)T, where Xb
k is N x M. This decomposition also 

assures us that the resulting Pb is positive semidefinite.

Å The Kalman Gain then becomes: 

K= Pb HT(HPb HT + R) -1 = 

Xb(Xb)THT(H Xb(Xb)T HT + R) -1 =

Xb (HXb)T(H Xb(HXb)T + R) -1

Å Note that, to evaluate K, we apply H to the M columns of Xb rather than to the N
columns of Pb!!

Å The N x N matrices Pa/b have been eliminated from the computation! In their place 
we have to deal with N x M (Xb) matrices in state space and their observation 
space projections HXb matrices which have dimension L x M (L = number of 
observations)



Kalman Filters for large dimensional systems

Å The approximated KF described above is called Reduced-Rank Kalman Filter (RRKF)

Å Unsurprisingly, there is a price to pay for this huge reduction in computational cost

Å The analysis increment is a linear combination of the columns of Xb:

xa - xb = K (yɀH(xb)) = Xb (HXb)T (( HXb)( HXb)T + R) -1 (yɀH(xb))

Å The whole blue part of the equation computes to a vector of size M (ie, the rank of 
Pb)! 

Å The analysis increments are thus formed as a linear combination of the columns of 
Xb: they are confined to the column subspace of Xb, which has at most rankM << 
N.

Å This severe reduction in rank of Pa/b hastwo main effects:

1. There are too few degrees of freedom ŀǾŀƛƭŀōƭŜ ǘƻ Ŧƛǘ ǘƘŜ Ғмл7 observations 
ŀǾŀƛƭŀōƭŜ ŘǳǊƛƴƎ ǘƘŜ ŀƴŀƭȅǎƛǎ ǿƛƴŘƻǿΥ ǘƘŜ ŀƴŀƭȅǎƛǎ ƛǎ ǘƻƻ άǎƳƻƻǘƘέΤ

2. The low-rank approximations of the covariance matrices suffer
from spurious long-distance correlations. 



Kalman Filters for large dimensional systems

Å There are two main ways to combat the rank deficiency/sampling noise problem: 

1. Domain localization(e.g. Houtekamer and Mitchell, 1998; Ott et al.2004);

Å Domain localization solves the analysis equations independently for each grid 
point, or for each of a set of regions covering the domain. 

Å Each analysis uses only observations that are local to the grid point (or region) and 
the observations are usually weighted according to their distance from the 
analysed grid point (e.g., Hunt et al., 2007)

Å This guarantees that the analysis at each grid point (or region) is not influenced by 
distant observations.

Å The method acts to vastly increase the dimension of the sub-space in which the 
analysis increment is constructed because each grid point is updated by a different 
linear combination of ensemble perturbations

Å However, performing independent analyses for each region can lead to a) 
difficulties in the analysis of the large scales and b) in producing balanced analyses.



Kalman Filters for large dimensional systems

Domain localization(e.g. Houtekamer and Mitchell, 1998; Ott et al.
2004);

Analysed grid point

Local observations



Kalman Filters for large dimensional systems

2. Covariance localization  (e.g. Houtekamer and Mitchell, 2001). 

Å Covariance localization is performed by element wise (Schur) multiplication of the 
error covariance matrices with a predefined correlation matrix representing a 
decaying function of distance (vertical and/or horizontal).

Pb -->  ʍL  ° Pb

Å In this way spurious long range correlations in Pb are suppressed.

Å As for domain localization, the method acts to vastly increase the dimension of the 
sub-space in which the analysis increment is constructed.

Å Choosing the product function is non-trivial. It is easy to modify Pb in undesirable 
ways. In particular, balance relationships (e.g. geostrophy) may be adversely 
affected and long-distance correlations will be ignored. 

Å In order to suppress sampling noise some of the information content of the 
observations is lost



Kalman Filters for large dimensional systems

Miyoshi et al., 2014



Random sampling of 
vertical background 
error correlation 
matrix for different 
ensemble sizes.

Note how sampling noise 
decreases slowly with 
ensemble size O(M1/2)
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=

Å Standard Error of sample correlation å (1-ʍ2 ȾЍ .ens-1) 

Å For small ʍ, Nens SE becomes >= �! (e.g. �!=0.1, Nens=40 => stderr(�!���§����������

Å Since ʍ-> 0 for large horiz./vert. distances apply distance based covariance 
localization on the sample Pf

Pf
sampled

ʍL = Pf
local


