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Standard Kalman Filter

A In the Overview of Assimilation Methods lecture we have seen that, assuming all errors have
Gaussian statistic, the posterior (i.e., analysis) distribui@m « ) can also be expressed as a
Gaussian distribution:
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A Kalman Filter methods try to find the mean and covariance of this posterior
distribution

A Note that, under this Gaussian assumption, knowing the mean and covariance of
n(el«) means knowing the full posterior pdf
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Standard Kalman Filter

A Let us start with a simple univariate example:

Assume we are analysing a single state variabMhose errors are zero mean and
Gaussian distributed around its background forecgst

'Qd)(f] . ))~N(o‘oﬁ, )

n(w W )7

We have one observation of the state variable, also with Gaussian errors
Qaf -—>) ~N (@ )

[(@:ey) ( )7

Applying Bayes theorem we find:
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Comparing to a standard Gaussian distribution:
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we see that the posterior distribution is also Gaussian with mean and variance:
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Standard Kalman Filter

A A simple univariate example:

Introducing theKalman gain0 —— the equations for the mean and variance can
be recast as:

0olg) —— (p 0),
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The posterior variance is thus reduc@dk<0) with respect to the prior (background)
variance, while the posterior mean isiaear, weighted averagef the prior and the
observation.
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Standard Kalman Filter

A These Kalman Filter analysis update equations can be generalised to thelimeltisional
and multivariate casé/{ikleand Berliner, 2007Bromiley 2014):
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These are the same update equations obtained in Assimilation Algorithms (1).

To o

In that context they were derived without making assumptions of Gaussianity, but looking for
the analysis estimate which had the minimum error variance and could be expressed as a
linear combination of the background and the observations (we called iBthéf- Best

Linear Unbiased Estimate). Linearity of observation operator and model was invoked.

A If the background and observations are normally distributed, KFreupdate equationgjive
the mean and the covariance of tlp@sterior distribution Under these hypotheses the
posterior distribution is also Gaussian, so we have completely solved the problem!
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Standard Kalman Filter

A In NWP applications of data assimilation we want to update our estimate of the state and its
uncertainty at later times, as new observations come in: we wanl/tbethe analysis

Time
Observations Observations Observations
l Forecast l Forecast l Forecast

ANalysisS j——— ANEYSIS |— ANalysis

\ Medium-range forecast

A For each analysis in this cycle we require a backgro@ir(de. a prior estimate of the state
valid at time t)

A Usually, our best prlor estimate of the state at time t is glven by a forecast from the precedinc
analysis attime-m 0 0 KS & o6:F O1 ANR dzy R€ 0

= M(,)

A What is the error covariance matrix (=> the uncertainty) associated with this background?
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Standard Kalman Filter

What is the error covariance matrix associated with the background forecast?
X0, = M(X3,_,)

Subtract thetrue statex” from both sides of the equation:

X0 - X\ = R.= M(X%,) - X
Sincec, , = X', + RA_; We have:

R.= M(X'( .+ R,) - X

M(X'(1) + MR - X, =
MR, + §;

Here we have defined thenodel error' , =M(X',,) - X,

We will also assume thato systematic errorare present in our system

<Ba>=< >=(0 => <sb>=0
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Standard Kalman Filter

A The background error covariance matrix will then be given by:
<R, (R)™>i P,=<(MR_,+ &) (MR + 8)™>=
M<R_, (R.)™> M'+<s.(s)"™> =
MP3_, MT+ Q

A Here we have assumedr®_, (s,)™ =0 and defined the model error covariance
matrixQi <gs,(s)™

A Note how the background error is described as the sum of the errors of the
previous analysis propagated by tlheearisedmodeldynamics to the time of the
update(MP2_, M") and the newadditive errorantroduced by the model integration

Q)

A We now have all the equations necessary to propagate and updatetbetstate
and its error estimates
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Standard Kalman Filter

th t Xat th+1 t+1
Pbt I:’at I:’bt+1
s @ >0
New Observations
3. Compute the Kalman Gain
1. Predict the state ahead K= PPHI(HPPHT + R) 1. Predict the state ahead
X° = M(X3;) » 4. Update state estimate X0y = M(X3)
X3 = xP+ K(y - H(x?)) .
2. Predict the state error cov. 2. Predict the state error co\
P,.= MP._ M7+ Q 5. Update state error estimate P, = MPEMT+ Q,,
_ Pa.=(1zZKH)P°, (I ZKH) T+ KRK' i
Propagation Propagation
Update
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Standard Kalman Filter

A Under the assumption that the modsland the observation operatdd arelinear
operators(i.e., they do not depend on the stagg the Kalman Filter produces an
optimal sequence of analys€sg?, x2,, é , x& _;,X3)

A The KF analysig is thebest (minimum variance) linear unbiased estimefd¢he
state at time t, giverx’, and all observations up to timey,y.h §n

A Note that Gaussianity of errors is not requiredeiifors are Gaussiahe Kalman
Filter provides the correct posterior conditional probability estimate (according to
I 8 SaQ [xt2lyy.h ¥ phidalsolinplies that if errors are Gaussian
then the state estimated with the KF is also thest likelystate (the mode of the

pdf).
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Extended Standard Kalman Filter

The extended Kalman Filter (EKF) is alimmar extension of the Kalman Filter
where the model and observation operators are not required to be linear
operators (independent of the state) as in the standard KF:

0 H(yp & (EKF) 0 E£op & (KF)
oy M (04 (EKF) oy 'EoO4 (KF)

The covariance update and prediction steps of the KF equations usethéians
of the model and observation operators, linearized around the analysed/predicted
state, i.e.:

M= —Aen), H = —(%,)

The EKF is thus a first order linearization of the KF equations around the current
state estimates. As such it is as good as a first order Taylor expansion is a good
approximation of the nonlinear system we are dealing with.

A type of EKF is used at ECMWF irathaysis of soil variabl€Simplified
Extended Kalman Filter, SEKF). More on this later in the dedicated lecture.
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Kalman Filters for large dimensional systems

A The Kalman Filter (standard or extended)ngeasible for large dimensional
systems

A The size N of the analysis/background state in the ECMWF 40Mdi0f : the KF
requires us to store and evolve in time state covariance matrie®s) (of O(NxN)

0 ¢CKS 22NI RQa Tl aidSsSadud soperatibddzpesdedondOl y
u An efficient implementation of matrix multiplication of two &1 matrices
requires ~18? (O(N-8))operations: about 4 months on the fastest computer!

i EvaluatingP’,= MP2_, M+ Q NB |lj dzA NEB a8 megelinfegrations!

A A range of approximate Kalman Filters has been developed for use with large
dimensional systems.

A All of these methods rely on some formslofv-rank approximatiorof the state
covariance matrices of background and analysis errors.
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Kalman Filters for large dimensional systems

A Letus assume thaP®® hasrank M<<d S®I P afFmnnod oNIF yiTl
spanned by its columns/rows)

A Inthis cag we can writeP°= X?(XP)T, whereX?, is N x M. This decomposition also
assures us that the resultif® is positivesemidefinite.

A The Kalman Gain then becomes:
K= PPHT(HPPH™ + R)1=
X(XP)THT(HX(XP) THT + R) 1=
XP (HXO)T(HXP(HX) T+ R)1
A Note that, to evaluatd, we applyH to the M columns ofX’ rather than to theN
columns ofP°!!

A The N x N matriceB® have been eliminated from the computation! In their place
we have to deal with N x NXf) matrices in state space and their observation
space projection#lX’ matriceswhich have dimension L x M € number of
observations)
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Kalman Filters for large dimensional systems

A The approximated KF described above is cdlleduceeRank Kalman Filter (RRKF)
A Unsurprisingly, therés a price to pay for this hugeductionin computational cost
A The analysis increment is a linear combination of the colump&:of

x2-x° = K(y Z H(x?) = X0 (HXO) T ((HX)(HX) T+ R)* (y Z H(x"))

A The whole blue part of the equation computes to a vector of 8izge, the rank of
Po)!

A The analysis increments are thus formed as a linear combination of the columns o
XP: they are confined to the column subspaceX®f which has at most rankl <<
N.

A Thissevere reduction in rank ¢#® hastwo main effects:

1. There areoo few degrees of freedorh @I A f | 6 f S 7absgervaidngi U
IS AEFO6tS RANAY3I GKS Fylteara 6AyR

2. The lowrank approximations of the covariance matrices suffer
from spurious longdistance correlations.
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Kalman Filters for large dimensional systems

A There are two main ways to combat the rank deficiency/sampling noise problem:

1. Domain localizatioife.g. Houtekamer and Mitchell, 1998; @ttal. 2004);

A Domain localizatiosolves theanalysis equations independently for each grid
point, or for each of a set of regions covering the domain.

A Each analysis uses onlyservations that are local to the grid poifar region) and
the observations are usually weighted according to their distance from the
analysed grid point (e.g., Huat al., 2007)

A This guarantees that the analysis at each grid point (or region) is not influenced by
distant observations.

A The method acts to vastly increase the dimension of thespdxe in which the
analysis increment is constructed because each grid point is updated by a differer
linear combination of ensemble perturbations

A However, performing independent analyses for each region can leajl to
difficultiesin the analysis of the large scales d)dnproducing balanced analyses.
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Kalman Filters for large dimensional systems

Domainlocalization(e.g. Houtekamer and Mitchell, 1998; @ttal.
2004);

@ Analysed grid point

¢ Local observations
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Kalman Filters for large dimensional systems

2. Covariance localizatio(e.g. Houtekamer and Mitchell, 2001).

A Covariance localization is performed by element wise (Schuijplication of the
error covariance matrices with a predefined correlation matepresenting a
decaying function of distance (vertical and/or horizontal)

Po--> p o PP
A In this way spurious long range correlation$#rare suppressed.

A As for domain localization, the method acts to vastly increase the dimension of the
sub-space in which the analysis increment is constructed.

A Choosing the product function is ndrivial. It is easy to modiff?°in undesirable
ways. In particular, balance relationships (ggostrophy maybe adversely
affected and longlistance correlations will be ignored.

A In order to suppress sampling noise some of the information content of the
observations is lost
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Kalman Filters for large dimensional systems

(a) 20 members w/o Iocalization (b) 20 members w/ 700-km localization
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Figure 4. Similar to Figure 1 but at 00:00 UTC 18 January with the yellow star point at 46.389°N, 176.25°W and for different
ensemble sizes ((a) 20, (c) 80, (d) 320, (e) 1280, and (f) 10,240 members) and (b) with localization for 20 members.

Miyoshi et al., 2014

 an
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS




Climatological T Correl.

Handom T Correl -30 Samples

model level
mode! level

Random sampling of
vertical background
error correlation Rancer T ol 0 Sapls
matrix for different g e o
ensemble sizes.

model Ieuel

Random. T Correl. - 120 Samples

model level
mode! level

Note how sampling noise
decreases slowly with
ensemble size O(M)

4] 40 5 b
model level

TR R TR
mode! level

Random. T Correl. - 240 Samples Random. T Gorrel. - 480 Samples

CIN

B

model level
z

model level

c ECMWF EUROPEAN CEI

E 4 an @0 7 § F 1 & g0 a0 s so 70 EB1 9D
model level medel level



A Standard Error of (IsMnfph.el) correl ation

A For small m N, SE becomes >= ! (e.g. 1=0.1, N,,~40 =>stder(! §

Qo

A Since m-> 0 for large horiz./vert. distances apply distance based covariance
localization on the sample P
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