Data assimilation and machine learning

Alan Geer
European Centre for Medium-range Weather Forecasts
alan.geer@ecmwf.int

Thanks to: Massimo Bonavita, Sam Hatfield, Patricia de Rosnay, Peter Dueben, Peter Lean
An ML example: microwave land surface observation operator

Python, Keras, Tensorflow, Numpy, Matplotlib, Xarray
Datasets

AMSR2 24GHz v-pol observations

10 possible predictors for the brightness temperature

- Skin temperature
- Soil moisture
- Leaf area index
- + orography, snow depth, snow density, integrated water vapour, cloud, rain and snow water contents
Data preparation

```python
obdata = xr.open_dataset('/perm/rd/stg/odb/hkhg/ml_amrs2_chan9.nc')

x0 = np.column_stack([obdata.TSFC, obdata.SOIL_MOISTURE, obdata.SNOW_DEPTH, \n                         obdata.SNOW_DENSITY, obdata.LAI, \n                         obdata.FG_TCWV, obdata.FG_CWP, obdata.FG_RWP, obdata.FG_IWP])
y0 = np.column_stack([obdata.OBSVALUE])

def x_normalise(x_orig):
    x_min = [200.0, 0, 0, 0, 0, 0, 0, 0, 0]
    x_max = [350.0, 0.75, 0.5, 300, 10, 5000, 70, 1, 2, 8]
    x_min = np.outer(np.ones(x_orig.shape[0]), np.array(x_min))
    x_max = np.outer(np.ones(x_orig.shape[0]), np.array(x_max))
    return (x_orig - (x_max + x_min) / 2.0) / (x_max - x_min) * 2.0

x1 = x_normalise(x0)
```

Dataset of 470,000 observations and colocated model data

Prepare numpy arrays of correct shape for Keras

Normalise ‘features’ x to roughly -1 to $+1$

And... (not shown) normalise labels y to within 0 to 1
Sigmoid activation function \(\sigma() \)

\[
b = \text{np.arange}(-5, 5, 0.01) \\
\text{plt.plot}(b, 1/(1+\text{np.exp}(-b)))
\]
Feedforward neural network - example

1 hidden layer

\[
x' = \sigma(Wx) + b
\]

\[
x_3
\]

\[
+b_1
\]

\[
+w'_{1}
\]

\[
+x_3
\]

\[
+b_2
\]

\[
+w'_{2}
\]

\[
+x_2
\]

\[
+b_3
\]

\[
+w'_{3}
\]

\[
+y = \sigma(W'x') + b'
\]

output layer

x

\[
=Wx + b
\]

1 hidden layer

y
Set up a neural network for the land surface observation operator

```python
In [21]: model = Sequential()
    ...: model.add(Dense(units=10, activation='sigmoid', input_dim=10))
    ...: model.add(Dense(units=6, activation='sigmoid'))
    ...: model.add(Dense(units=1, activation='sigmoid'))
    ...: model.summary()
    ...
    ...: model.compile(loss='mean_squared_error', optimizer='adam')
    ...
Model: "sequential_2"
```

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>dense_4 (Dense)</td>
<td>(None, 10)</td>
<td>110</td>
</tr>
<tr>
<td>dense_5 (Dense)</td>
<td>(None, 6)</td>
<td>66</td>
</tr>
<tr>
<td>dense_6 (Dense)</td>
<td>(None, 1)</td>
<td>7</td>
</tr>
</tbody>
</table>

Total params: 183
Trainable params: 183
Non-trainable params: 0

Train it (about 25 minutes on a linux workstation)

```python
history = model.fit(x1, y1, epochs=100)
```
Results (ability to fit training dataset)

Physically-based simulation produced by IFS (RTTOV for atmosphere, dynamical emissivity retrieval for surface emissivity)

\[
\text{predict} = y_{\text{unnormalise}}(\text{model.predict}(x1))
\]

Hand-written function to recover TB
Results cont. (ability to fit training dataset)

ML predicted (TB [K])

TBs not low enough
The data assimilation approach: physical models, prior knowledge
Physical forward model

Satellite observations

SSMIS F-17 channel 13 (19 GHz, v)
Microwave brightness temperatures
3rd December 2014

Geophysical variables

- Atmospheric temperature, water vapour, wind, cloud, precipitation
- Skin and substrate temperature and moisture
- Ocean wind, waves, foam
- Sea-ice
- Snowpack
- Ice
- Vegetation
- Soil

\[
y = h \left(\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_{\ldots}
\end{array} \right)
\]
Physical forward model

Satellite observations

Geophysical variables

Equations & parameters – where sometimes knowledge is quite uncertain

Gas spectroscopy
Scattering from hydrometeors
Cloud and precipitation micro and macro-structure
Snow / ice grain size and structure

SSMIS F-17 channel 13 (19 GHz, v)
Microwave brightness temperatures
3rd December 2014

\[y = h \]

\[
\begin{bmatrix}
\chi_1 \\
\chi_2 \\
\chi_3 \\
\chi_4 \\
\chi_5 \\
\chi_{...}
\end{bmatrix},
\begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
w_4 \\
w_5 \\
w_{...}
\end{bmatrix}
\]
The forward and inverse problem

\[y = h(x, w) \]

Observations

Geophysical state

Model parameters

Forward model

\[x, w = h^{-1}(y) \]

Inverse model

No unique solution: ill-posed

The best that observations can do is to provide a statistical improvement in our knowledge of x and w
The inverse problem solved by Bayes theorem

\[P(x, w | y) = K (y, P(y|x, w), P(x, w)) \]

Observations

Geophysical state

Model parameters

(Posterior) Probability of x and w given y

Prior probability of x and w

Probabilistic equivalent of the forward model h()
Cost function for variational DA

Assume Gaussian errors (error standard deviation σ) and for clarity here simplify to scalar variables and ignore any covariance between observation, model or state error.

$$J(x, w) = \frac{(y - h(x, w))^2}{(\sigma y)^2} + \frac{(x^b - x)^2}{(\sigma x)^2} + \frac{(w^b - w)^2}{(\sigma w)^2}$$

- **DA Cost function**
- **Observation term**
- **Prior knowledge of state**
- **Prior knowledge of model**
Cost / loss function equivalence of ML and variational DA

Assume Gaussian errors (error standard deviation σ) and for clarity here simplify to scalar variables and ignore any covariance between observation, model or state error.

\[
J(x, w) = \frac{(y - h(x, w))^2}{(\sigma_y)^2} + \frac{(x^b - x)^2}{(\sigma_x)^2} + \frac{(w^b - w)^2}{(\sigma_w)^2}
\]

- **ML**
 - Loss function
 - Basic loss function
 - Feature error?
 - Weights regularisation

- **DA**
 - Cost function
 - Observation term
 - Prior knowledge of state
 - Prior knowledge of model
<table>
<thead>
<tr>
<th>Machine learning (e.g. NN)</th>
<th>Variational data assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labels</td>
<td>Observations</td>
</tr>
<tr>
<td>y</td>
<td>y^o</td>
</tr>
<tr>
<td>Features</td>
<td>State</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Neural network or other learned models</td>
<td>Physical forward model</td>
</tr>
<tr>
<td>$y' = W(x)$</td>
<td>$y = H(x)$</td>
</tr>
<tr>
<td>Objective or loss function</td>
<td>Cost function</td>
</tr>
<tr>
<td>$(y - y')^2$</td>
<td>$J = J^b + (y^o - H(x))^T R^{-1} (y^o - H(x))$</td>
</tr>
<tr>
<td>Regularisation</td>
<td>Background term</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Iterative gradient descent</td>
<td>Conjugate gradient method (e.g.)</td>
</tr>
<tr>
<td>Back propagation</td>
<td>Adjoint model</td>
</tr>
<tr>
<td></td>
<td>$\frac{\partial J}{\partial x} = H^T \frac{\partial J}{\partial y}$</td>
</tr>
<tr>
<td>Train model and then apply it</td>
<td>Optimise state in an update-forecast cycle</td>
</tr>
</tbody>
</table>
Need for model learning even in current DA approach
4D-Variational DA with a perfect model assumption

Geophysical state

Background model trajectory

Analysis model trajectory

Improved forecast

Observations

DA adjusts initial state to better fit observations
But models are not perfect...

- Within the fluid systems (atmosphere / ocean):
 - Truncation of model resolution and dynamical processes (e.g. 8 km currently) therefore needing parametrisations of diffusion, turbulence, gravity waves etc.
 - The water problem: phase changes
 - Cloud and precipitation processes – microscopic scales
 - Sea-ice, snowpack, soil moisture

- Throughout the earth system – many processes or boundary conditions that are not modeled from physical first principles and/or are strongly heterogeneous in time and space
 - Biosphere, lithosphere, aerosols ...

Wilson Bentley (1902, http://www.photolib.noaa.gov)
Model learning from observations

State complexity

- Parameter estimation in meteorology

- Parameter estimation in hydrogeology

- Chemical source terms

Model complexity

- Parameter identification in meteorology

- Use DA to infer ODE representation of Lorenz models (Bocquet et al., 2019)
 https://doi.org/10.5194/npg-26-143-2019

Completeness of learning

- New wave of ML and DA

Simultaneous state and parameter estimation:
- Autoconversion parameter learnt in a GCM (Kotsuki et al., 2020)
 https://doi.org/10.1029/2019JD031304

- Roughness length learnt in local area model (Ruckstuhl and Janjić, 2020)
 https://doi.org/10.1175/MWR-D-19-0233.1

Pure parameter estimation, e.g:
- Groundwater modeling, e.g. hydraulic conductivity (Zhou et al., 2014).
 https://doi.org/10.1016/j.advwatres.2013.10.014

- CO₂ source term estimation (Peylin et al., 2013)
 https://doi.org/10.5194/bg-10-6699-2013

Model (and sometimes) state estimation in simple models:
- ML of KS equation (Pathak et al., 2018)
 https://doi.org/10.1103/PhysRevLett.120.024102
Bayesian view
Bayesian equivalence of ML and DA

As a Bayesian network

\[y = h(x, w) \]

Geer (2021)
Bocquet et al. (2020)
Abarbanel et al. (2018)
Goodfellow et al. (2016)

https://doi.org/10.21957/7fyj2811r
https://doi.org/10.1162/neco_a_01094
https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2
https://www.deeplearningbook.org
Bayesian networks: representing the factorisation of joint probability distributions

1. Factorise in two different ways using the chain rule of probability

\[P(y, x, w) = P(x|w, y)P(w|y)P(y) \]
\[P(y, x, w) = P(y|x, w)P(x|w)P(w) \]

2. Equate the two right hand sides and rewrite

\[P(x|w, y)P(w|y) = \frac{P(y|x, w)P(x|w)P(w)}{P(y)} \]

3. Rewrite by putting back the joint distributions of x,w: Bayes’ rule

\[P(x, w|y) = \frac{P(y|x, w)P(x, w)}{P(y)} \]
Illustration (scalar w, x, y)

prior
$P(x, w)$

posterior
$P(x, w | y)$

observation
Adding the time dimension

Assume x_{t+1} depends only on initial state x_t and parameters w

$$P(x_{t+1}, w, x_t | y_t) = P(x_{t+1} | w, x_t)P(x_t, w | y_t)$$

Forward model
Bayes’ rule (previous slides)

$$P(x_{t+1}, w | y_t) = \int P(x_{t+1}, w, x_t | y_t) \, dx_t$$

‘Marginalisation’
Time evolution of state – cycled data assimilation
Recursive neural network ≈ cycled data assimilation
Time evolution of state – cycled data assimilation

Time evolving state

Time-constant model (parameters)

Observations
Recursive neural network

Inputs

Hidden state

Constant NN weights

Outputs

Inputs:
- c
- a
- t

Hidden state:
- \(x_1 \)
- \(x_2 \)
- \(x_3 \)
- \(x_4 \)

Outputs:
- \(y_1 \)
- \(y_2 \)
- \(y_3 \)
Inside an atmospheric model & data assimilation timestep

One model time-step
Learning an improved model of cloud physics (ML or DA)

Cloud physics

\[x_{1.1} \]
\[x_{1.2} \]

We want to train a model against observations, but we cannot directly observe gridded intermediate states \(x_{1.1} \) and \(x_{1.2} \) ... or more precisely model tendencies ...
Inside an atmospheric model

... so train the model inside the data assimilation system
How ML can help typical DA
Learning model error

\[x_t \xrightarrow{\text{Physical model}} x_{t+1}^{phys} + \Delta x_{t+1}^{nn} \xrightarrow{\text{Neural network}} x_{t+1} \]

Offline ML – learn weights \(w \) of model for model error tendency

\[
J(x, w) = (y - h(x, w))^2
\]

Weak-constraint 4D-Var, done online (\(w \) is a field of model error tendencies)

\[
J(x, w) = \\
\quad \quad \ldots + \frac{(w^b - w)^2}{(\sigma w)^2}
\]

- Train a NN on IFS non-oographic gravity wave drag scheme (NOGWD)
- Differentiate the NN via the chain rule to get:
 - TL (tangent-linear)
 - Adjoint (== back-propagation)
- Use the NN TL and adjoint in the 4D-Var (but keep the physical nonlinear NOGWD scheme)
 - Successful 2-month run of IFS cycling 4D-Var completed

\[\varepsilon = \langle |H\delta x - h(x + \delta x) - h(x)| \rangle \]
Satellite bias correction using ML

- Application: SSMIS instrument solar-dependent calibration anomalies
- Offline training of a bias model in observation space
 - Learn bias between observations and model as a function of satellite-solar orbital parameters.
- Problems: many latent variables, orbit changes, model changes

Daily binned bias

- Training set: 360 days
- Model upgrade

Static NN model predicted

- Bias [K]
Satellite bias correction

- Dynamic NN approach:
 - Re-train each day on yesterday’s biases
 - Learn bias as a function of orbit angle
- This is essentially an offline, nonlinear version of VarBC, which is a standard bias correction technique for DA
Sequential learning

• Batch learning
 – relearn on everything, i.e. past and new data, each time?
 – take pre-trained network and run training on new data only

• Sequential learning
 – e.g. Online sequential Extreme Learning Machine (OS-ELM, Liang et al., 2006) [10.1109/TNN.2006.880583](https://doi.org/10.1109/TNN.2006.880583)
 – e.g. Forecasting daily streamflow using OSELM (Lima, Cannon, Hsieh, 2016) [10.1016/j.jhydrol.2016.03.017](https://doi.org/10.1016/j.jhydrol.2016.03.017)

• How close are these techniques to the overarching Bayesian framework, i.e. to data assimilation?
Observation operators using ML

- Fast observation operators (e.g. radiative transfer operators RTTOV and CRTM) are already ‘ML’ – just using linear regression or heuristic model components
 - Train on physical reference models
 - Train directly between model background and observations

- E.g. Soil moisture
 - Single hidden layer NN trained between SMOS observations and model soil moisture (H-TESSEL or IFS)
 - A version of this is used in the operational ECMWF forecasting system
How DA can help typical ML
Physically constrained machine learning

```python
def net_u(self, x, t):
    u = self.neural_net(tf.concat([x,t], 1), self.weights, self.biases)
    return u

def net_f(self, x, t):
    u = self.net_u(x, t)
    u_t = tf.gradients(u, t)[0]
    u_x = tf.gradients(u, x)[0]
    u_xx = tf.gradients(u_x, x)[0]
    f = u_t + u*u_x - self.nu*u_xx
    return f

self.loss = tf.reduce_mean(tf.square(self.u_tf - self.u_pred)) + \
            tf.reduce_mean(tf.square(self.f_pred))
```

Neural network

Gradients of the network

Burger’s equation

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} = 0
\]

Custom loss function

https://github.com/maziarraissi/PINNs

But ML and DA are one…