
In situ atmospheric observations: status, developments, gap analysis

ECMWF Annual Seminar, 13 September 2021

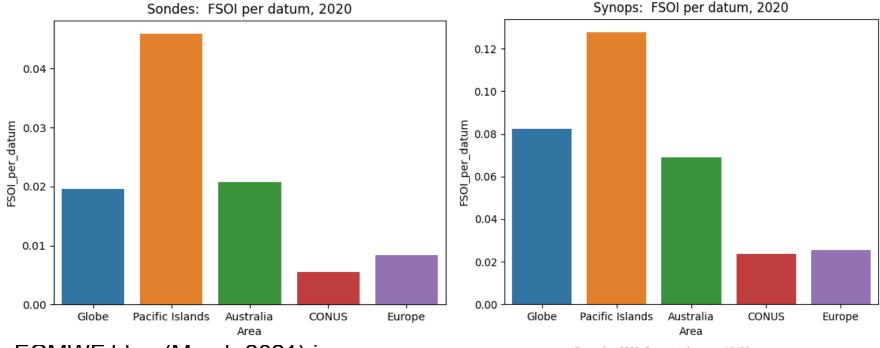
Bruce Ingleby (ECMWF)

Bruce.Ingleby@ecmwf.int

August 2021: BUOY report availability

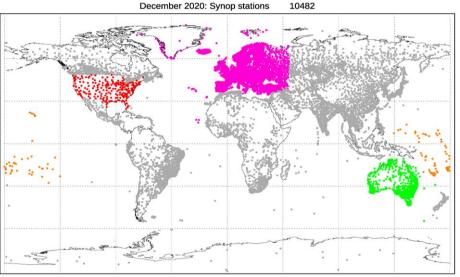
Overview

- Introduction
 - Use in global NWP, illustrated with ECMWF plots, impact (FSOI)
- Recent developments ... and gaps
 - Aircraft: effect of Covid-19, use of Mode-S, a direction problem
 - Radiosonde data: high-resolution profiles and use of descent data
 - Surface data: coverage & frequency
 - Metadata, metadata, metadata
- Status
 - Aircraft, Radiosondes and Surface
- References and links
- I will simplify at times for brevity happy to supply more details later


In situ observations

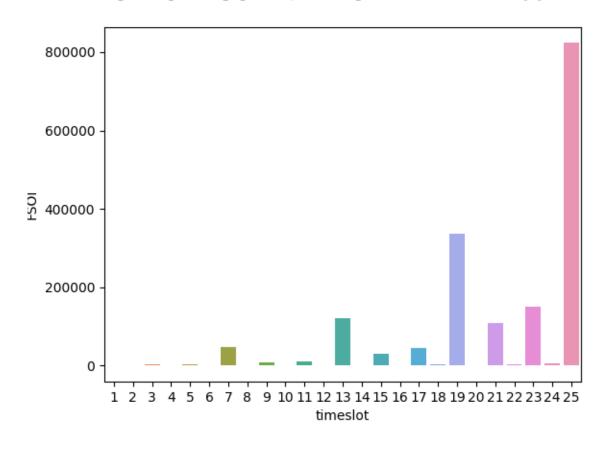
System	Variables, Advantages	Caveats, Notes
Aircraft	Wind, temperature, some humidity Locally high density Low cost	Very uneven distribution T needs bias correction (BC)
Radiosondes	Wind, temperature, humidity High vertical resolution Closest to reference profiles	Low density + gaps Humidity quality mixed in upper troposphere
Surface	Pressure, temperature, humidity, wind, SST, snow depth Locally high density	Sparse over oceans/deserts Local (representation) issues for some variables
GroundGNSS	Integrated water vapour Derived from a time delay	Biases, sometimes problems with profile of q increments? Used in some global NWP.

Satellites provide more data on temperature+humidity than wind Satellite soundings are less useful at low levels over snow/ice

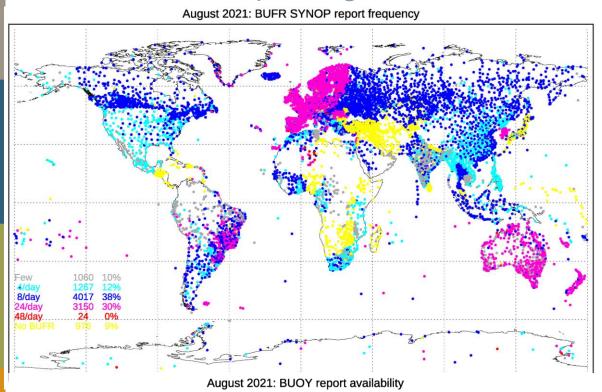


More impact per station in data sparse areas:

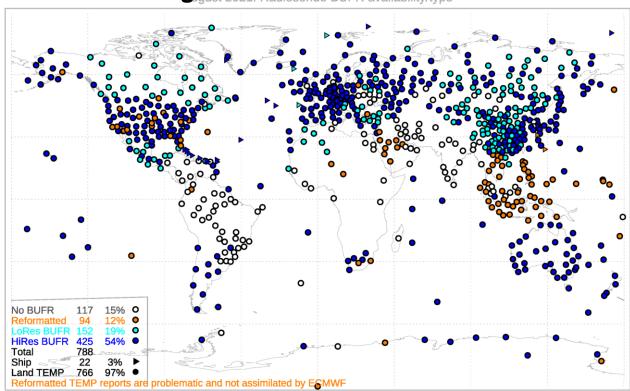
- ECMWF blog (March 2021) in support of WMO SOFF (Systematic Observations Financing Facility)
- More impact per station/report from scattered islands in the Pacific
- 4 of the radiosondes in the area are maintained by MeteoFrance



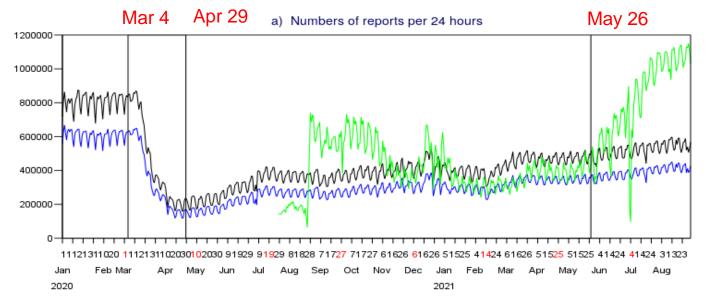
More impact at end of time window – real effect

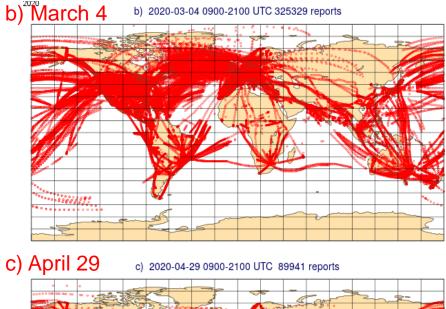

- Many Synops only report 3-hourly ^(*)
- WIGOS encouraging hourly data
- Radiosondes mainly 3h into window
 lower FSOI
- Drifting buoys have very high FSOI per pressure report (data sparse areas)
- But only 58% of drifters have a pressure sensor 😕

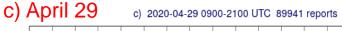
SYNOP FSOI within ECMWF 12 h window

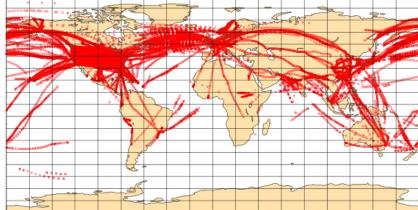


Gaps, migration to BUFR and high resolution/frequency

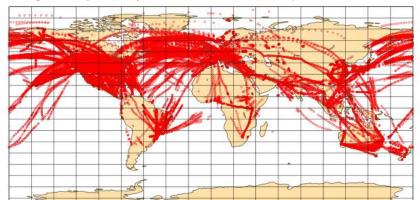

- 10% of SYNOPs and 28% of TEMPs don't send good BUFR 😕
- 30% of SYNOPs report hourly mainly Europe+Australia
- 54% of TEMPs provide HiRes (China improved recently)
- Only 58% of BUOYs (1220) provide pressure

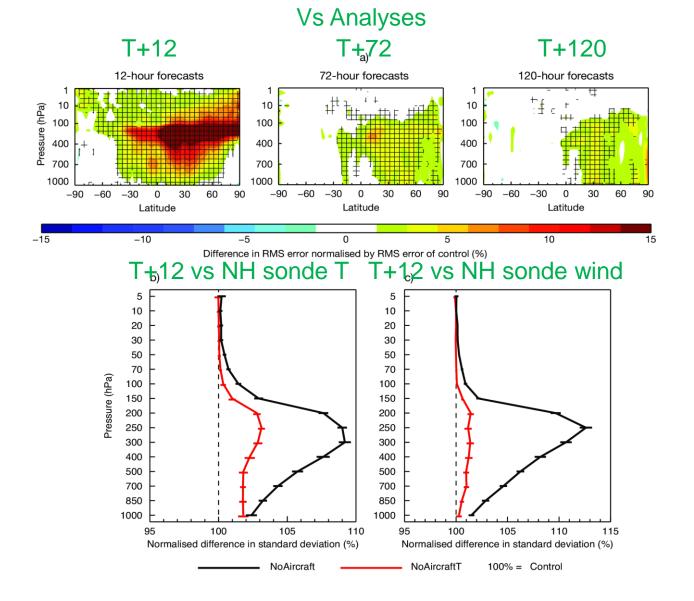

August 2021: radiosondes




Impact of Covid-19 on aircraft reports

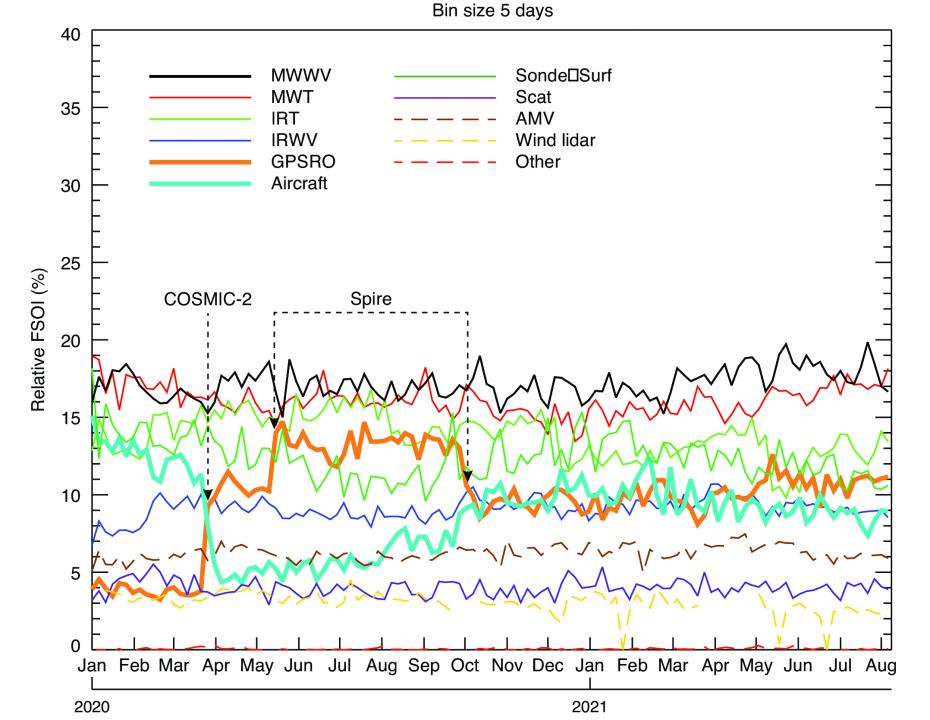
- Mid-March to Mid-April 2020 global numbers of AMDAR+AIREP dropped by 75%
- Long-haul very badly hit, cargo less so
- Back to almost 50% by July 2020, slight increase since
- ECMWF started using Mode-S winds over Europe (green line below) – only about 5% of those available
- Regional numbers have fluctuated (very few in SH in April 2020), increase in Europe in last few months



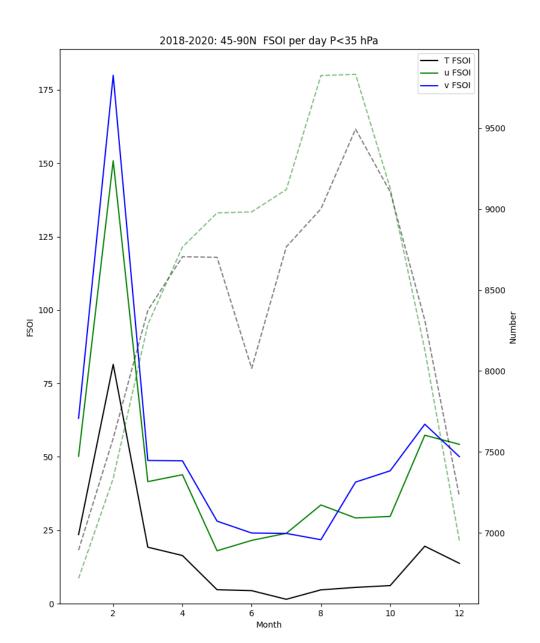

d) May 26 (20,212)-05-26 0900-2100 UTC 187896 reports

Impact from aircraft data denial

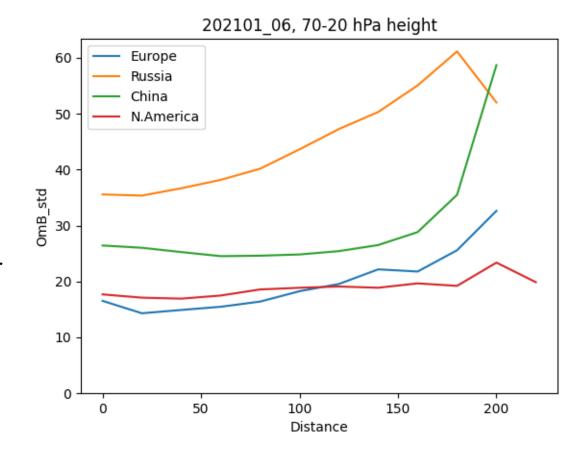
- OSE: Observing System Experiment
- ECMWF IFS, 3 months in 2019
- Control all data
- NoAircraft: top plot and black line in b,c)
- NoAircraftT(emperature), red line in b,c)
- Biggest impact is ~250 hPa in NH almost
 10% worse vs sonde T, 13% vs sonde wind
- Most of the impact (even on T) comes from the aircraft winds


Ingleby et al (2021, GRL)

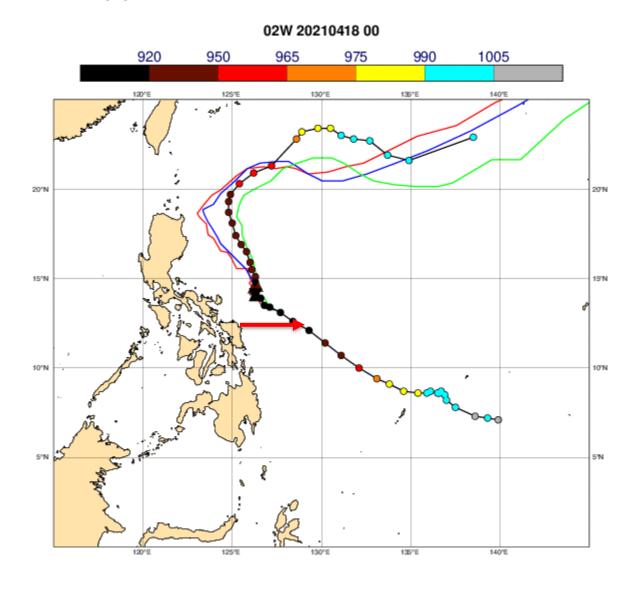
FSOI % for 2020/21

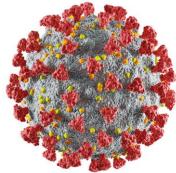

- Forecast sensitivity to observation impact: estimate of how important obs subsets are for T+24 forecast
- RO: steps from start of COSMIC-2+Spire, Spire stopped end Sept
- Aircraft: drop in Mar/Apr then ~level
- Then increase (SH+)
- 2021: seasonal cycle?
- Aeolus: ~3% (gaps)

Seasonal cycle of radiosonde impact in stratosphere (poster)


- Radiosonde FSOI 45-90N for pressure <35 hPa
- Most of the impact comes from wind: u and v
- Nothing much happens in summer!
- Main impact in winter, especially associated with sudden warming/vortex splitting
- Fewer data points in winter
 (dashed lines) balloons burst
 earlier
- Case for using larger balloons in winter

Radiosondes: GNSS vs radar


- Plot shows fit of stratospheric heights to model vs the distance drifted (km)
- Many radiosondes now use GNSS for position+wind finding (OK with or without a pressure sensor)
- China uses radar + P sensor OK ^(*)
- Russia uses radar without P sensor not good especially at large distance (low radar elevation angle)
 - They are starting to deploy new MRZ-N1 GNSS radiosondes – small sample so far
 - Problems clearest for height used for verification but not assimilation


Metadata: crucial but often underappreciated

- Even getting latitude/longitude/height correct for fixed stations can be a headache
- Wrong heights Pstn biases
- Track of TC Surigae, April 2021
- Operational forecast (red) track too far W
- Forecast excluding Synop from 98546 (green)
- Catarman airport: 124.6°E but typo in 2019 moved it to 128.6°E in OSCAR/surface
 - Correct location in BUFR reports but OSCAR/surface usually more reliable

- Covid-19 reduced the number of aircraft reports by 75% for ~2months
 - Then partial recovery to ~50% of pre-Covid levels, fluctuations by region
- Aircraft data are valuable for NWP, biggest impact is on wind at ~250 hPa
 - Winds give more impact than temperatures, more impact in NH
- Cannot see a decrease in forecast quality in 2020 (multiple centres):
 - Satellite data more important (increased in 2020). Aircraft data didn't drop to zero
 - Day-to-day and year-to-year variations in forecast skill complicate the picture
- B787 wind problem very frustrating issue partially corrected at ECMWF now
- Aircraft temperature biases need metadata (aircraft type & airline)
- Anonymisation and multiple identifiers complicate matters
- Use of Mode-S aircraft winds over Europe at ECMWF very dense
- WMO link to ICAO (WICAP) should increase AMDAR coverage
- Possible future use of GNSS altitudes from aircraft

Status – Radiosonde data

- Reported profiles include some filtering/corrections (Dirksen et al, 2014)
- GNSS winds: good quality and high resolution
 - Pendulum motion needs more attention
- Radar: occasional wind problems, poor heights without P sensor (Russia)
- Migration to HiRes BUFR reports still incomplete ...
- Use of radiosonde drift positions improves (O-B) at upper levels
- Recent work on radiosonde descent data (Ingleby et al, 2021, AMTD)
- Radiosondes under financial (and Covid) pressure ...
- Next WMO radiosonde intercomparison in Germany in 2022
- Important for: assimilation (anchor obs), verification, diagnostic studies
- North of 45N stratospheric data more important in winter than summer

Status – Surface data

- Main variable used is surface pressure (PS); verification of T, pptn etc
- Some stations need PS bias correction (wrong Zstn?)
- Good metadata important (surface and radiosondes)
- Use of other variables in global NWP (Ingleby, 2015; Met Office)
 - Benefit from using T and RH, but use of Synop winds ~ neutral
- Migration to BUFR 90% complete
- WIGOS station identifiers just starting messy.
- 'Easy wins': Hourly Synops! Put P sensors on all buoys!
- Extra stations: SEE-MHEWS (SE Europe), Mistral (Italy), TAHMO (Africa)
- Crowd-sourced data: WOW and NetAtmo (Randriamampianina, Friday)
- Global NWP: want to fill in the gaps in data sparse areas

- Bormann et al (2019, EC TM 839): 'Global observing system experiments in the ECMWF assimilation system.'
- de Haan et al (2021, AMTD): 'Characterizing and correcting the warm bias observed in AMDAR temperature observations'
- Dirksen et al (2014, AMT): 'Reference upper air data: GRUAN ... RS92 radiosonde'

Recent references

- Ingleby (2015, QJRMS): 'Global assimilation of ... surface stations' (at UKMO)
- Ingleby et al (2016, BAMS): 'Progress toward High-Resolution, Real-Time Radiosonde Reports.'
- Ingleby (2017, EC TM 807): 'An assessment of different radiosonde types 2015/2016.'
- Ingleby and Isaksen (2018, ASL): 'Drifting buoy pressures: Impact on NWP.'
- Ingleby et al (2019, EC TM 855): 'Evaluation and impact of aircraft humidity data in ECMWF's NWP system.'
- Ingleby et al (2021, GRL): 'The impact of Covid-19 on weather forecasts: a balanced view'
- Ingleby et al (2021, AMTD): 'On the quality of RS41 radiosonde descent data'
- James & Benjamin (2017, MWR): 'OSEs with Rapid Refresh system'
- James et al (2020, JAMC): 'Commercial aircraft-based observations for NWP: Global coverage, data impacts, and COVID-19'
- Lawrence et al (2019, QJRMS): 'Use and impact of Arctic observations in the ECMWF NWP system.'
- Pauley and Ingleby (2021, book chapter, in press): 'Assimilation of in situ observations'
- Zhu et al (2015, MWR): 'Variational Correction of Aircraft Temperature Bias in the NCEP's GSI Analysis System.'
- 2020 Workshop: Aircraft weather observations and their use https://events.ecmwf.int/event/168/
- BUFR migration maps/links: https://confluence.ecmwf.int/display/TCBUF/Data+availability

