Bias aware data assimilation

Patrick Laloyaux (with the help of many colleagues)
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Modelling the Earth system

ECMWEF has been developing a comprehensive Earth system model which forms the basis for all our data
assimilation and forecasting activities. In this talk we concentrate on the atmospheric component (IFS)
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Monitoring the quality of the atmospheric model for DA

Difference between the 12-hour model trajectory with reference observations
(radiosondes)
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Systematic error when the atmospheric model is integrated over 12 hours
=» Cold bias in the mid/lower stratosphere (>0.5C)
= Warm bias in the upper stratosphere (>0.5C)




Monitoring the quality of the atmospheric model for DA

Stratospheric biases can travel through the atmosphere and impact the troposphere
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What is the best way to handle model biases? Data Assimilation approach? Machine Learning approach? What
are the links between both of them?



= Data Assimilation approach
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Standard 4D-Var formulation

4D-Var is one of the most popular algorithm to find the optimal initial state by minimising the discrepancies with
the prior estimate and the observations
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=» Standard formulation assumes that the model is perfect
=> A model trajectory is entirely determined by its initial condition



Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term n in the model equation
rrp = My(xg—1) +n fork=1,2,--- K

The model error estimate n contains 3 physical fields (temperature, vorticity and divergence)
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=» Introduce additional degrees of freedom to fit background and observations

=>» Constant model error forcing over the assimilation window

=> A model trajectory is entirely determined by its initial condition and the model error forcing
=>» Concept of scale separation introduced between background and model errors

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020



Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term n in the model equation
rrp = My(xg—1) +n fork=1,2,--- K

The model error estimate n contains 3 physical fields (temperature, vorticity and divergence)
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=» Introduce additional degrees of freedom to fit background and observations

=>» Constant model error forcing over the assimilation window

=> A model trajectory is entirely determined by its initial condition and the model error forcing
=>» Concept of scale separation introduced between background and model errors

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020



Weak-constraint 4D-Var formulation in operations

This technique is used operationally since 30 June 2020 to correct the stratospheric biases in the HRES system

Mean first-guess departure with respect to temperature
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=» bias reduced up to 50%
=>» weak-constraint 4D-Var in EDA will be implemented in 47r3 (similar reduction in biases)

P. Laloyaux et al., Towards an unbiased stratospheric analysis, 2020



Extreme events in the stratosphere (SSW)

Rapid warming in the stratosphere (70N-90N) Model bias dipole
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Model upgrade at ECMWF

The IFS model is upgraded on a regular basis. The bias of the new model version may be different and needs to
be estimated

Model bias estimation in 47r1 (fg - RO) Radiosonde departure (K)
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Model upgrade at ECMWF

The ECMWF model is upgraded on a regular basis. The bias of the new model is different and need to be
estimated
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47r1] Weak-constraint 4D-Var reduced the model bias
strong-constraint
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Weak-constraint 4D-Var is all set
48rl strong-constraint (a possible candidate for 48r1)

No need to retune weak-constraint 4D-Var in 48rl as it
learns the new model bias on its own (only a careful
monitoring).

Weak-constraint 4D-Var does not prevent model
developments. They work hand in hand!




Monitoring the quality of the atmospheric model for DA

Difference between the 12-hour model trajectory with reference observations
(radiosondes)
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Systematic error when the atmospheric model is integrated over 12 hours
=» The troposphere contains also some biases (temperature, wind, humidity, ...)




Challenges to extend to the troposphere

Temperature
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Extension of weak-constraint 4D-Var to
the troposphere

Significant wind improvements in
Tropics

Significant temperature improvements in
Tropics and SH

Issue in the NH at 200hPa and 700hPa

Aircraft background departures at 200hPa
show a residual bias that is absorbed by
WC-4DVar



Challenges to extend to the troposphere

The current version of WC-4D-Var has two crucial simplifications in the operational implementation:
1) constant error forcing during the assimilation window
2) persisting the model error estimate from one assimilation window to the following one.
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Humidity bias has to be taken into account rp = Mg(zp-1) +n fork=1.2--- K

M. Bonavita, Exploring the structure of time-correlated model errors in the ECMWEF data assimilation system, 2021



= Data Assimilation approach
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How to estimate model bias with a Neural Network

J. Brajar et al., Combining data assimilation and machine

DA/NN framework learning to emulate a dynamical model from sparse and

P’ noisy observations, 2020
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A. Farchi et al., Using machine learning to correct model error in data assimilation and forecast applications, 2020
M. Bonavita et al., Machine Learning for Model Error Inference and Correction, 2020



How to estimate model bias with a Neural Network

DA/NN framework
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How to estimate model bias with a Neural Network

12 years of ERAS: first-guess and departures with RO temperature retrievals (250 millions of RO observations)
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Results from the NVIDIA CNN
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NN results are really good but it required a large dataset for training (2008-2018)



How to estimate model bias with a Neural Network

The ultimate goal is to learn the model bias from the latest IFS cycle: NN is retrained on a new smaller
dataset (running 4D-Var is expensive)

12 years of ERAS: first-guess and departures with RO temperature retrievals
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Results from the NVIDIA CNN
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NN results are not as good but satisfactory (mainly due to the small number of samples)



Results from the NVIDIA CNN
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CNN performs similarly to WC4D-Var but WC4D-Var used only 20
days of data instead of 13 years for CNN!

Many ways to improve the NN approach:

» observation sparsity with GCN
" more observations

= Detter regularisation terms

= online learning



How to estimate model bias with a Neural Network

DA/NN framework Forecast skill
. (2-scale Lorenz system)
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A. Farchi et al., A comparison of combined data assimilation and machine learning methods for offline and online
model error correction, 2020



= Data Assimilation approach
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Cost / loss function equivalence of ML and variational DA

A. Geer (2021) Learning earth system models from observations: machine learning or data assimilation?
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Online learning and links with weak-constraint 4D-Var

NN online loss function
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= |earn both model state and NN parameters from observations.

= the online correction steadily improves the model, and eventually gets more accurate than the offline correction
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A. Farchi et al., A comparison of combined data assimilation and machine learning methods for offline and online
model error correction, 2020



ECMWEF Strategy

ECMWEF STRATEGY 2021-2030

The strength of a common goal

‘Science and Technology’
strategic actions

The ‘Science and Technology’ strategic actions are linked

to enhancements in the exploitation of observations, data
assimilation, modelling and exploitation of new technologies,
computational science and operational processes.

Strengthen leadership in Earth
system data assimilation

ECMWF will strengthen its leadership
position in data assimilation by progressing
in coupled assimilation, algorithmic
development and integration of approaches.
This will include the incorporation of machine
learning, with 4D-Var data assimilation being
uniquely positioned to benefit from
integrating machine learning technologies
because the two fields share a common
theoretical foundation and use similar
computational tools.



Conclusion and future work
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Conclusion and future work
Radiosonde departure

ECMWEF investigates the machine learning approach to (01/01/2020 — 20/01/2020)
correct for model biases (among other things). Preliminary ) S g N I B
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