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Modelling the Earth system

ECMWF has been developing a comprehensive Earth system model which forms the basis for all our data 

assimilation and forecasting activities. In this talk we concentrate on the atmospheric component (IFS) 

46r1 Improvements in 

the convection and 

radiation schemes

47r1 Quintic vertical 

interpolation in semi-

Lagrangian advection 

47r3 Moist physics 

upgrade

One of the best models in the world, but it still contains some residual biases that must be taken into account in DA

48r1 Hybrid linear ozone, semi-

lagrangian vertical filter and 

new solar spectrum?



Monitoring the quality of the atmospheric model for DA

Difference between the 12-hour model trajectory with reference observations 

(radiosondes)

Systematic error when the atmospheric model is integrated over 12 hours

➔ Cold bias in the mid/lower stratosphere (>0.5C)

➔ Warm bias in the upper stratosphere (>0.5C)



Monitoring the quality of the atmospheric model for DA

Stratospheric biases can travel through the atmosphere and impact the troposphere

What is the best way to handle model biases? Data Assimilation approach? Machine Learning approach? What 

are the links between both of them?

RMSE change when stratospheric 

observations (radiosondes, RO, 

infrared, microwave, …) are 

withheld. 

Verified against operations 

between 25/01/2020 and 

25/03/2020



▪ Data Assimilation approach

▪ Machine Learning approach



Standard 4D-Var formulation

4D-Var is one of the most popular algorithm to find the optimal initial state by minimising the discrepancies with 

the prior estimate and the observations

➔Standard formulation assumes that the model is perfect 

➔A model trajectory is entirely determined by its initial condition

Model’s equation

4D-Var cost function



Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

➔ Introduce additional degrees of freedom to fit background and observations

➔Constant model error forcing over the assimilation window

➔A model trajectory is entirely determined by its initial condition and the model error forcing

➔ Concept of scale separation introduced between background and model errors 

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020



Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Model initial condition 

Model bias correction

➔ Introduce additional degrees of freedom to fit background and observations

➔Constant model error forcing over the assimilation window

➔A model trajectory is entirely determined by its initial condition and the model error forcing

➔ Concept of scale separation introduced between background and model errors 
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This technique is used operationally since 30 June 2020 to correct the stratospheric biases in the HRES system 

Mean first-guess departure with respect to temperature 

measurements from radiosondes

Weak-constraint 4D-Var formulation in operations

➔ bias reduced up to 50%

➔weak-constraint 4D-Var in EDA will be implemented in 47r3 (similar reduction in biases)

P. Laloyaux et al., Towards an unbiased stratospheric analysis, 2020



October 29, 2014

In collaboration with Inna Polichtchouk

Rapid warming in the stratosphere (70N-90N)

Extreme events in the stratosphere (SSW)

Model bias dipole

Captured and partially corrected by weak-constraint 4D-Var

Quick and 

consistent response 

to an unexpected 

extreme situation



Model upgrade at ECMWF

The IFS model is upgraded on a regular basis. The bias of the new model version may be different and needs to 

be estimated

In collaboration with Robin Hogan

Radiosonde departure (K)Model bias estimation in 47r1 (fg - RO)

Model bias estimation in 48r1 (fg - RO)

47r1 strong-constraint

48r1 strong-constraint



Model upgrade at ECMWF

Weak-constraint 4D-Var reduced the model bias

strong-constraint

weak-constraint

Weak-constraint 4D-Var is all set

strong-constraint (a possible candidate for 48r1)

weak-constraint

47r1

48r1

No need to retune weak-constraint 4D-Var in 48r1 as it 

learns the new model bias on its own (only a careful 

monitoring).

Weak-constraint 4D-Var does not prevent model 

developments. They work hand in hand!

The ECMWF model is upgraded on a regular basis. The bias of the new model is different and need to be 

estimated

Radiosonde departure (K)



Monitoring the quality of the atmospheric model for DA

Difference between the 12-hour model trajectory with reference observations 

(radiosondes)

Systematic error when the atmospheric model is integrated over 12 hours

➔ The troposphere contains also some biases (temperature, wind, humidity, …)
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Challenges to extend to the troposphere
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Extension of weak-constraint 4D-Var to 

the troposphere

Significant wind improvements in 

Tropics

Significant temperature improvements in 

Tropics and SH

Issue in the NH at 200hPa and 700hPa

Aircraft background departures at 200hPa 

show a residual bias that is absorbed by 

WC-4DVar

25/08/2019 to 25/10/2019
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The current version of WC-4D-Var has two crucial simplifications in the operational implementation: 

1) constant error forcing during the assimilation window

2) persisting the model error estimate from one assimilation window to the following one. 

M. Bonavita, Exploring the structure of time-correlated model errors in the ECMWF data assimilation system, 2021

Diagnosed model error (analysis increment) time correlations 

reveal the presence of a significant diurnal cycle, most notably 

in the boundary layer 

Humidity bias has to be taken into account

Challenges to extend to the troposphere



▪ Data Assimilation approach

▪ Machine Learning approach



How to estimate model bias with a Neural Network

J. Brajar et al., Combining data assimilation and machine 

learning to emulate a dynamical model from sparse and 

noisy observations, 2020

▪ Construct a dataset in model space (e.g. increments) 

▪ Train NN on the dataset

▪ Correct the model resolvent Timeseries of increments can highlight model 

biases but has some limitations as well 

DA/NN framework

A. Farchi et al., Using machine learning to correct model error in data assimilation and forecast applications, 2020 

M. Bonavita et al., Machine Learning for Model Error Inference and Correction, 2020



How to estimate model bias with a Neural Network

J. Brajar et al., Combining data assimilation and machine 

learning to emulate a dynamical model from sparse and 

noisy observations, 2020

▪ Construct a dataset in observation space (e.g. departure) 

▪ Train NN on the dataset

▪ Correct the model resolvent

DA/NN framework

Temperature bias estimated from RO observations. The 

atmospheric state is never fully observed in NWP

➔ average measurements on a 10-degree grid every 10 days 

➔ interpolate to fill the gaps



How to estimate model bias with a Neural Network

12 years of ERA5: first-guess and departures with RO temperature retrievals (250 millions of RO observations)

Convolutional neural network (CNN) are the best to learn 

computer-vision task.  

The usual 3 channels (RGB) have been replaced by 45 

channels (vertical levels in the stratosphere)

Dataset size

▪ input, output: 19x37x45 (31635) 

▪ training set: 2008-2018 (2300 samples)



Results from the NVIDIA CNN

Input Target (actual departure) Predicted from NN
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NN results are really good but it required a large dataset for training (2008-2018)



How to estimate model bias with a Neural Network

12 years of ERA5: first-guess and departures with RO temperature retrievals

1 years of latest IFS cycle: first-guess and departures with RO temperature retrievals

The ultimate goal is to learn the model bias from the latest IFS cycle: NN is retrained on a new smaller 

dataset (running 4D-Var is expensive)



NEW Input New Target (actual departure) Predicted from the NN

NN results are not as good but satisfactory (mainly due to the small number of samples)

Results from the NVIDIA CNN



SC4D-Var    WC4D-Var   CNN approach

Radiosonde departure 

(01/01/2020 – 20/01/2020)

Results from the NVIDIA CNN

CNN performs similarly to WC4D-Var but WC4D-Var used only 20 

days of data instead of 13 years for CNN!

Many ways to improve the NN approach:

▪ observation sparsity with  GCN

▪ more observations

▪ better regularisation terms

▪ online learning



How to estimate model bias with a Neural Network

▪ Construct a dataset in model space (e.g. analysis) 

▪ Train NN on the dataset

▪ Correct the model tendency

DA/NN framework

A. Farchi et al., A comparison of combined data assimilation and machine learning methods for offline and online 

model error correction, 2020

Forecast skill 

(2-scale Lorenz system)

Need the adjoint of the total model (physical + 

statistical) for the training step.



▪ Data Assimilation approach

▪ Machine Learning approach



Cost / loss function equivalence of ML and variational DA 

A. Geer (2021) Learning earth system models from observations: machine learning or data assimilation?



Online learning and links with weak-constraint 4D-Var

Data assimilation score

(2-scale Lorenz system)

▪ learn both model state and NN parameters from observations.

▪ the online correction steadily improves the model, and eventually gets more accurate than the offline correction

Weak-constraint 4D-Var cost function

NN online loss function

A. Farchi et al., A comparison of combined data assimilation and machine learning methods for offline and online 

model error correction, 2020



ECMWF Strategy



Conclusion and future work

ECMWF has implemented a weak-constraint 4D-Var in 

operations that learns and correct model biases in the 

stratosphere

▪ online learning from all the observations

▪ dealing with extreme events (SSW)

▪ dealing with model upgrade

▪ untangle model and observation biases still challenging 

(eg troposphere)

47r1 strong-constraint

47r1 weak-constraint

48r1 strong-constraint 

48r1 weak-constraint



ECMWF investigates the machine learning approach to 

correct for model biases (among other things). Preliminary 

results are encouraging

▪ Large datasets are required

▪ Retraining is challenging as limited availability of samples

▪ NN face the same issues to untangle model and 

observation biases (limited by the accuracy of the 

observations)

▪ Study on extreme events is required

As NN approach is getting more sophisticated, it gets closer 

to weak-constraint 4D-Var (two sides of the same coin)

SC4D-Var    WC4D-Var   CNN approach

Radiosonde departure 

(01/01/2020 – 20/01/2020)

Conclusion and future work


