

Land Observations for Model Calibration and Data Assimilation

J. Kolassa^{1,2}
R. Reichle¹, R. Koster¹, F. Zeng, Q. Liu^{1,2} and S. Mahanama^{3,4}

ECMWF Annual Seminar 2021
Session 4: Assessing the impact of observation
September 16, 2021

- (I) Global Modeling and Assimilation Office, NASA Goddard Space Flight Center
- (2) Science Systems and Applications Inc.
- (3) Science Applications International Corp.
- (4) Hydrological Sciences Laboratory, NASA Goddard Space Flight Center

Introduction

- Land data assimilation (DA) in numerical weather prediction (NWP) is growing
- Emergence of new high-quality land observations
 - SMOS and SMAP for soil moisture (SM)
 - Ecostress, SBG and others for vegetation
- Land DA techniques developed in Earth System Modeling community transition into NWP systems

Outline

- I. Merging of multi-sensor information
- 2. Increasing efficiency of data assimilation
- 3. Model parameter calibration vs. structural changes
- 4. Impact of land observations in NWP systems

Image Credit: NASA

Optimizing multi-sensor data assimilation

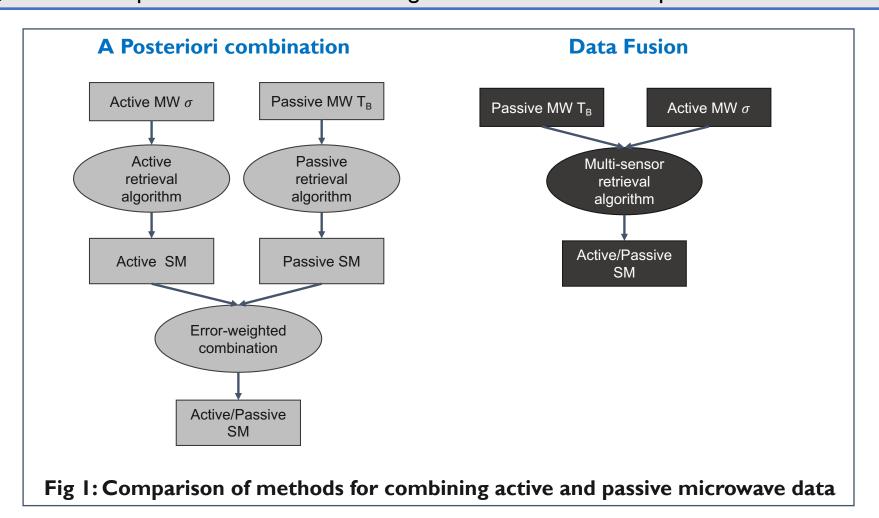
Multi-sensor satellite observations

Image Credit: NASA

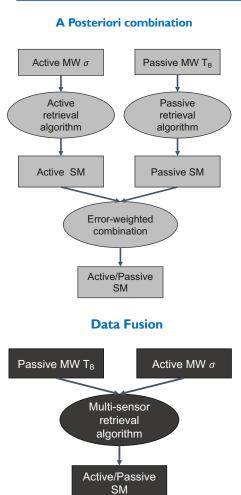
- Combining observations from multiple satellite sensors can be very advantageous
 - For soil moisture combining active and passive microwave observations (e.g., ESA-CCI SM, SMAP)

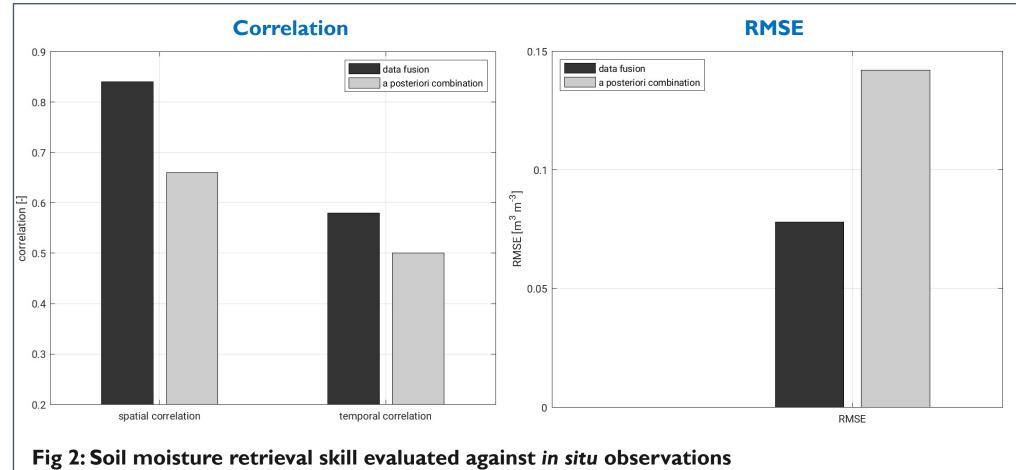
Q: Is there an optimal method for combining observations from multiple sensors?

Q: Is there an optimal method for combining observations from multiple sensors?

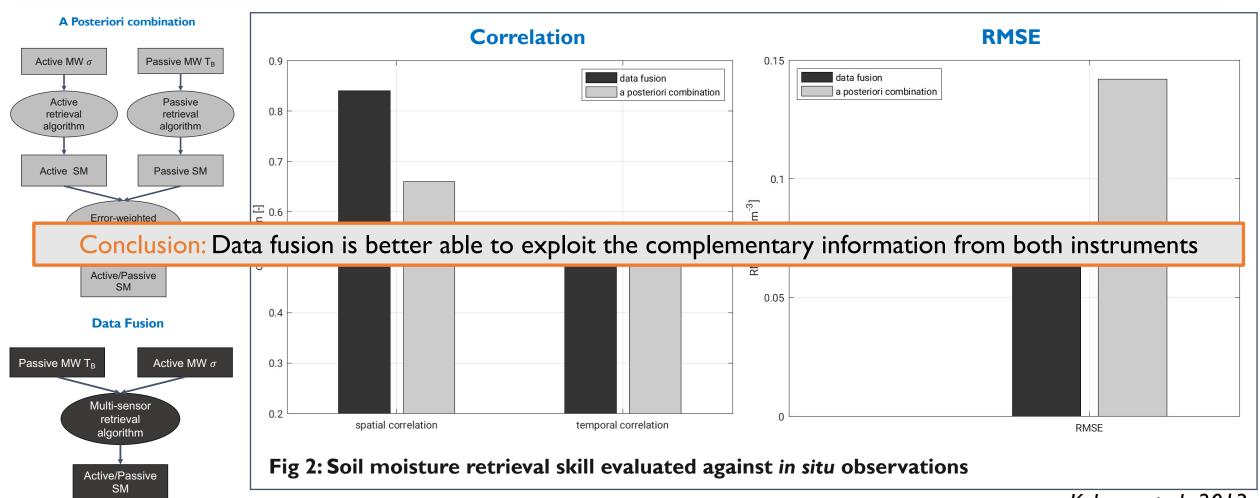


Q: Is there an optimal method for combining observations from multiple sensors?

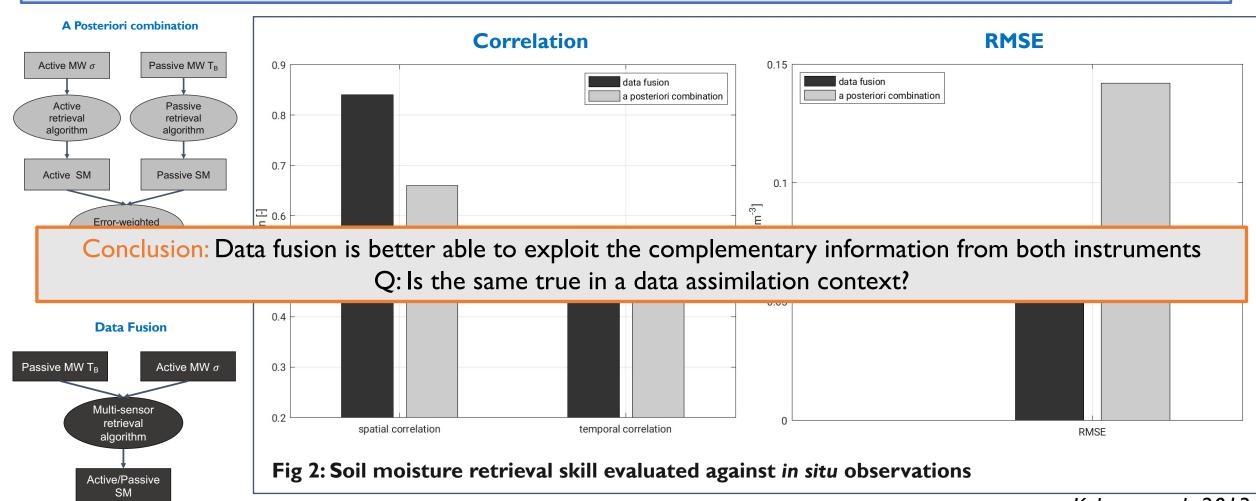




Q: Is there an optimal method for combining observations from multiple sensors?



Q: Is there an optimal method for combining observations from multiple sensors?



• Simultaneously assimilating active and passive microwave SM improves model estimate more than assimilating single sensor retrieval (e.g., Draper et al., 2012)

Q: For multi-sensor data assimilation does it matter how the joint active/passive information is provided?

Exp I: Separate Retrieval DA

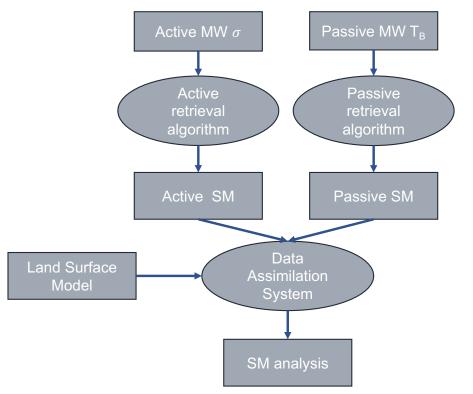


Fig 3: Comparison of methods for combining active and passive microwave data in a data assimilation context

Q: For multi-sensor data assimilation does it matter how the joint active/passive information is provided?

Exp I: Separate Retrieval DA Exp 2: Joint Retrieval DA Active MW σ Passive MW T_B Passive MW T_B Active MW σ Multi-sensor Active Passive retrieval retrieval algorithm algorithm algorithm Active/Passive Active SM Passive SM SM Data Data Land Surface Land Surface Assimilation Assimilation Model System System SM analysis SM analysis

Fig 3: Comparison of methods for combining active and passive microwave data in a data assimilation context

Q: For multi-sensor data assimilation does it matter how the joint active/passive information is provided?

Exp I: Separate Retrieval DA

Passive MW T_B Active MW σ Active Passive retrieval algorithm algorithm Active SM Passive SM Data Land Surface Assimilation System SM analysis

Exp 2: Joint Retrieval DA

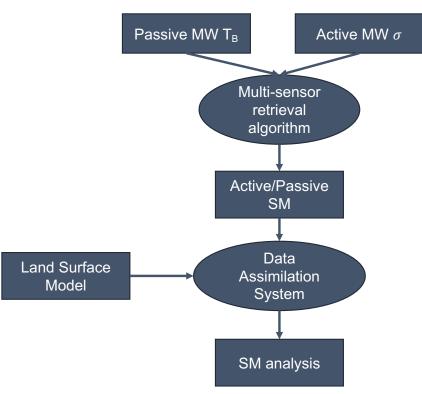
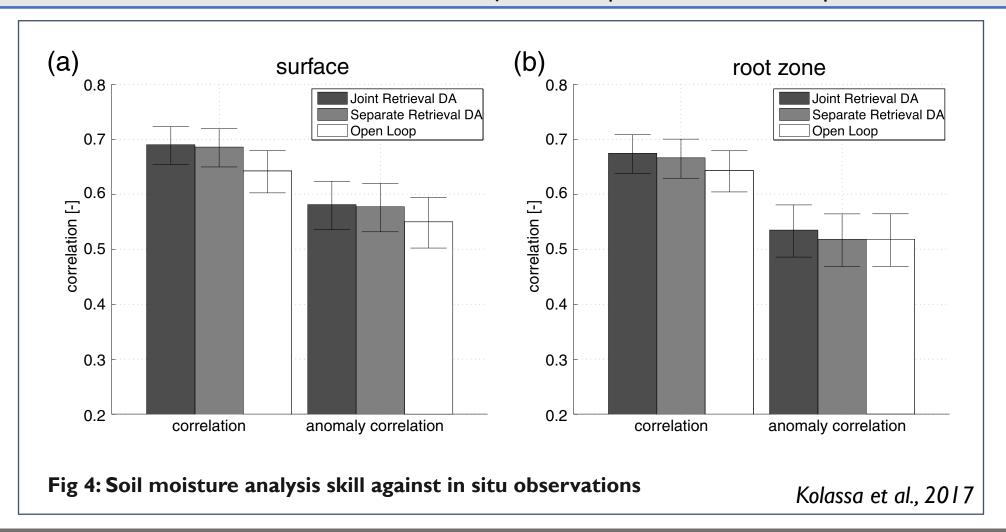
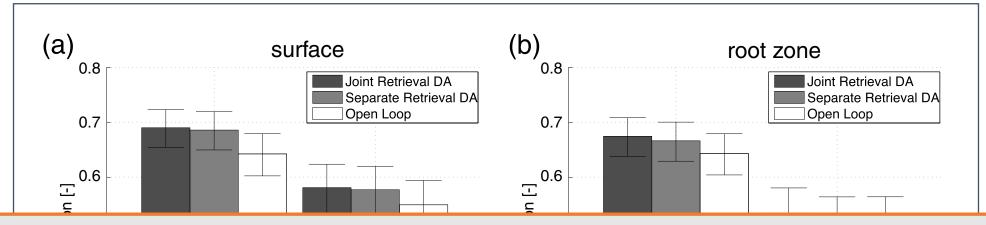


Fig 3: Comparison of methods for combining active and passive microwave data in a data assimilation context

Exp 3: Open loop (no DA)



Q: For multi-sensor data assimilation does it matter how the joint active/passive information is provided?



Conclusion: DA system can extract the same information, irrespective of the form in which it is provided

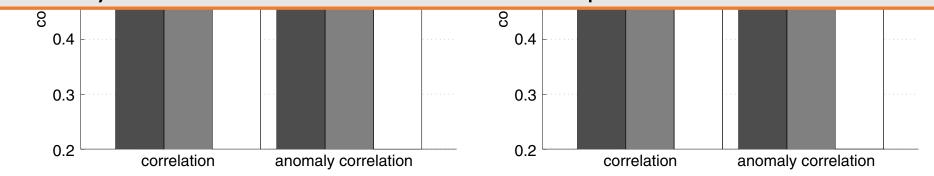
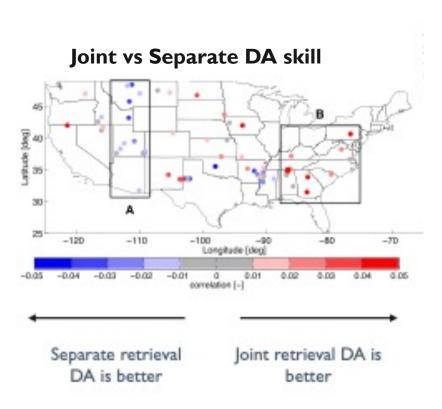
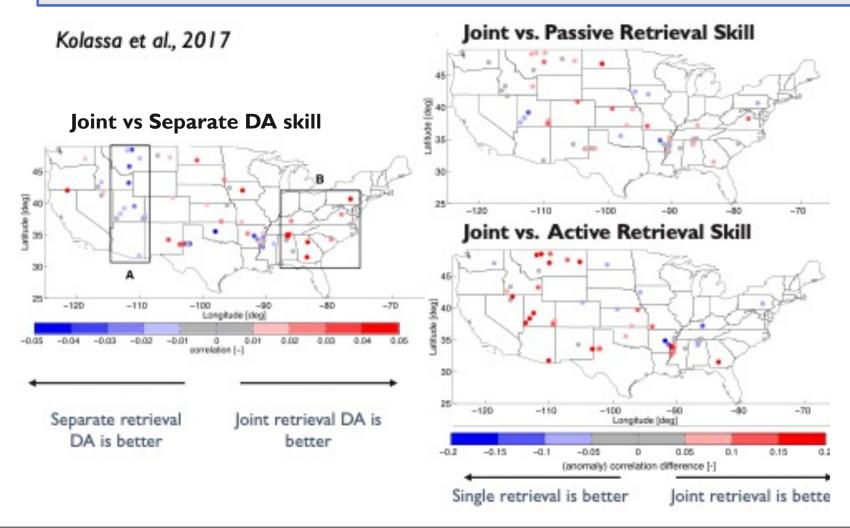
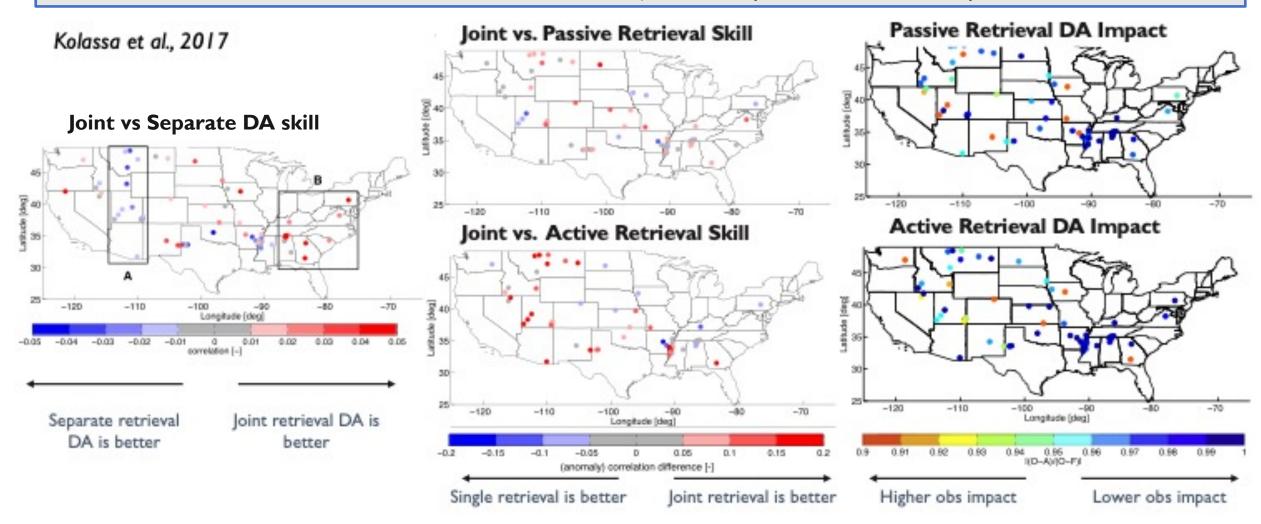


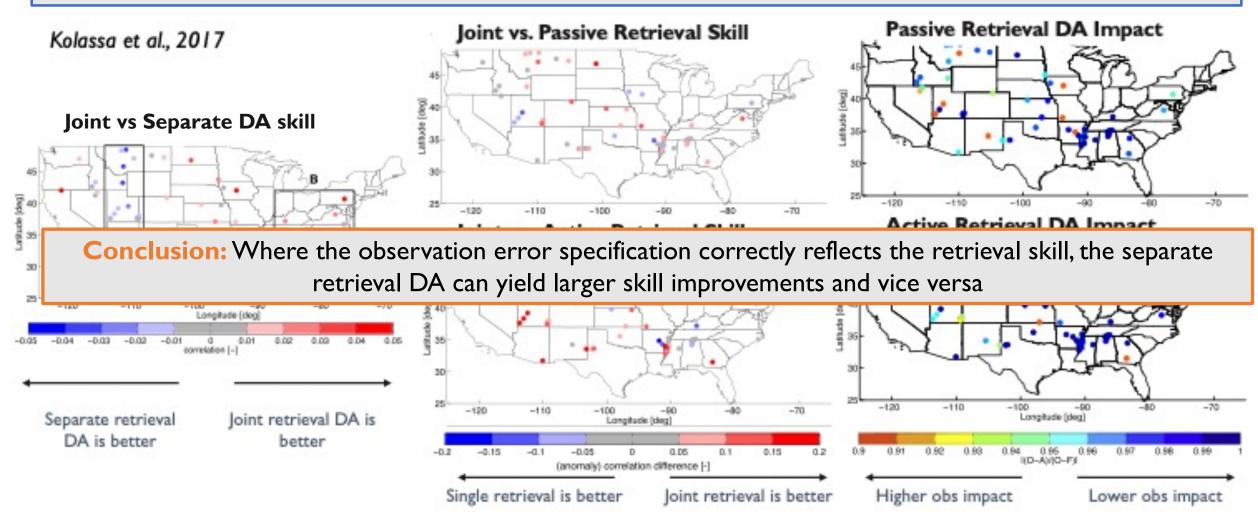
Fig 4: Soil moisture analysis skill against in situ observations

Q: For multi-sensor data assimilation does it matter how the joint active/passive information is provided?

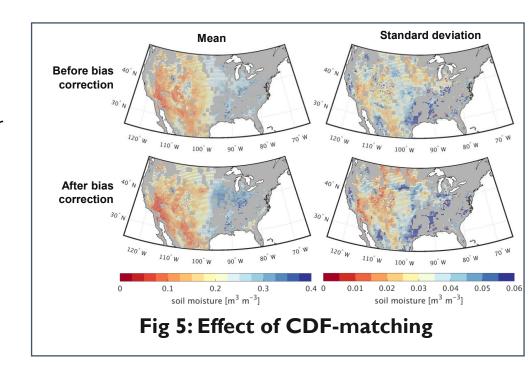




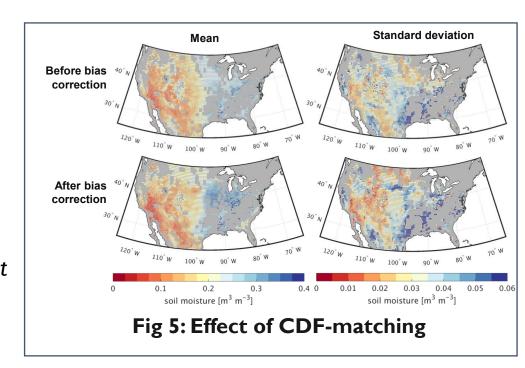




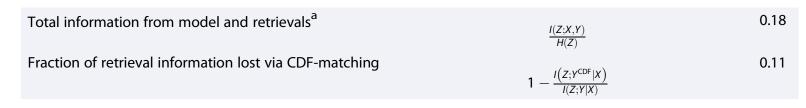
- Land data assimilation requires bias-correction (rescaling) of observations prior to assimilation
 - I. Assumption of DA system
 - 2. Different nature of observed and modeled variables (e.g., Koster et al., 2009 for SM)

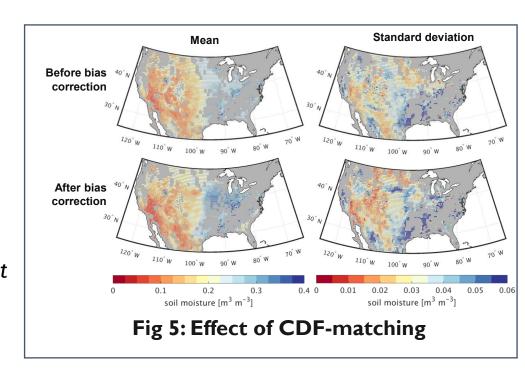


- Land data assimilation requires bias-correction (rescaling) of observations prior to assimilation
 - I. Assumption of DA system
 - 2. Different nature of observed and modeled variables (e.g., Koster et al., 2009 for SM)
- Rescaling limits us to correcting random errors
 - → Small fraction of independent satellite information is used
 - → Limits efficiency of data assimilation (Nearing et al, 2018, Kumar et al. 2012)

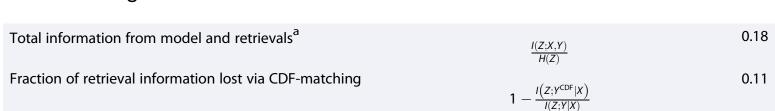


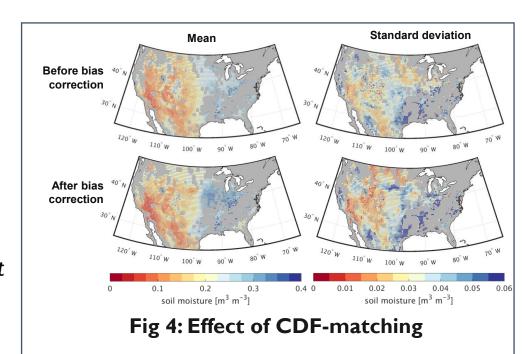
- Land data assimilation requires bias-correction (rescaling) of observations prior to assimilation
 - I. Assumption of DA system
 - 2. Different nature of observed and modeled variables (e.g., Koster et al., 2009 for SM)
- Rescaling limits us to correcting random errors
 - → Small fraction of independent satellite information is used
 - → Limits efficiency of data assimilation (Nearing et al, 2018, Kumar et al. 2012)
- From Nearing et al., 2018

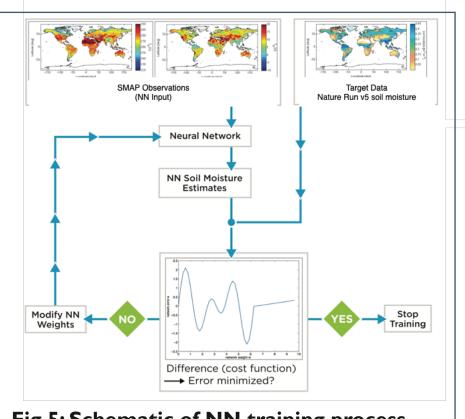




- Land data assimilation requires bias-correction (rescaling) of observations prior to assimilation
 - I. Assumption of DA system
 - 2. Different nature of observed and modeled variables (e.g., Koster et al., 2009 for SM)
- Rescaling limits us to correcting random errors
 - → Small fraction of independent satellite information is used
 - → Limits efficiency of data assimilation (Nearing et al, 2018, Kumar et al. 2012)
- From Nearing et al., 2018







 Neural Network (NN) trained with SMAP observation inputs and modeled SM outputs

Fig 5: Schematic of NN training process Kolassa et al., 2018

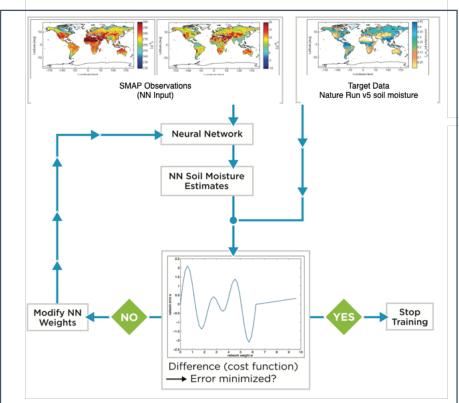


Fig 5: Schematic of NN training process Kolassa et al., 2018

- Neural Network (NN) trained with SMAP observation inputs and modeled SM outputs
- NN output is expressed in target data climatology → globally unbiased, same dynamic range
- Spatial and temporal patterns of output are driven by satellite observations

Q: How can we use more of the independent information provided by satellite observations while respecting the need for (some) bias correction?

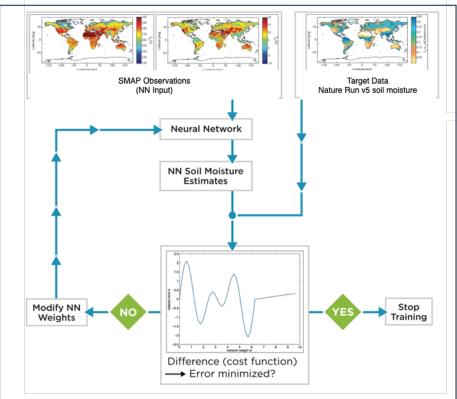


Fig 5: Schematic of NN training process Kolassa et al., 2018

- Neural Network (NN) trained with SMAP observation inputs and modeled SM outputs
- NN output is expressed in target data climatology → globally unbiased, same dynamic range
- Spatial and temporal patterns of output are driven by satellite observations

SMAP NN DA: NN retrieval assimilation without further bias correction

SMAP NN DA + CDF: NN retrieval assimilation with localized CDF-matching

OL: Open loop; model run without assimilation

Q: How can we use more of the independent information provided by satellite observations while respecting the need for (some) bias correction?

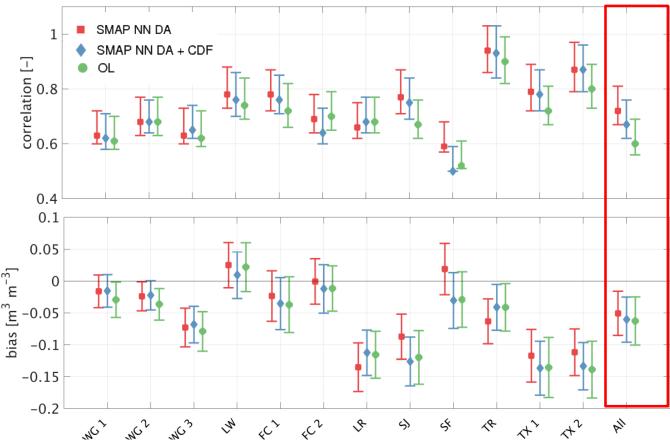


Fig 6: Skill improvements at SMAP core validation sites

Conclusion: On average, global bias correction yields slightly higher analysis skill than local bias correction

Q: How can we use more of the independent information provided by satellite observations while respecting the need for (some) bias correction?

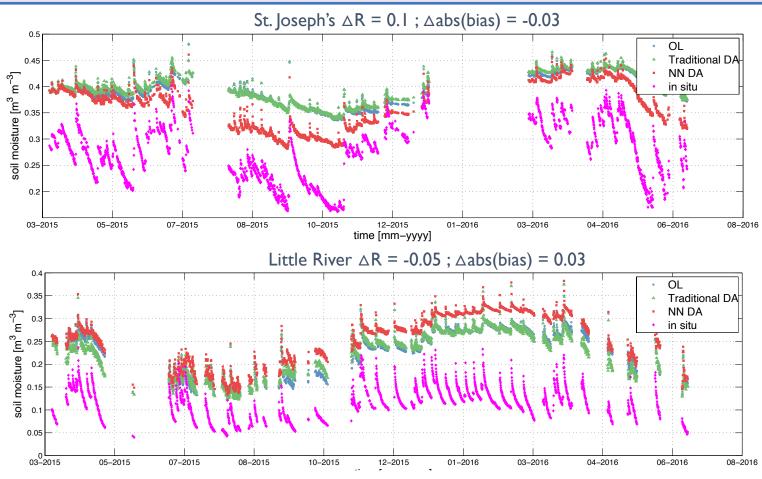
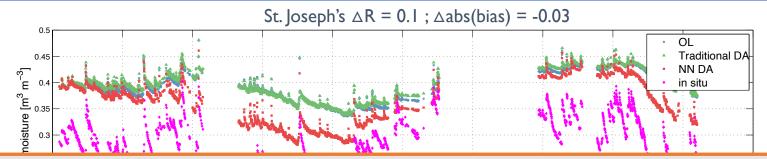


Fig 7: Experiment time series at St. Joseph and Little River stations

Q: How can we use more of the independent information provided by satellite observations while respecting the need for (some) bias correction?



Conclusions:

- NN DA is better able to capitalize on independent information provided by SMAP
- NN DA is also more susceptible to retrieval errors
- → Accurate observation error characterization is critical

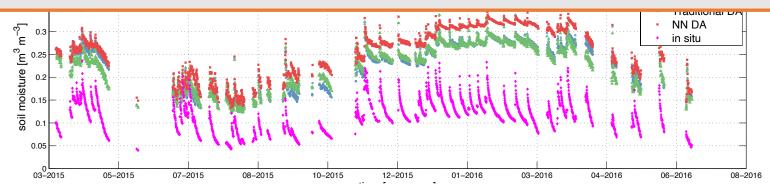
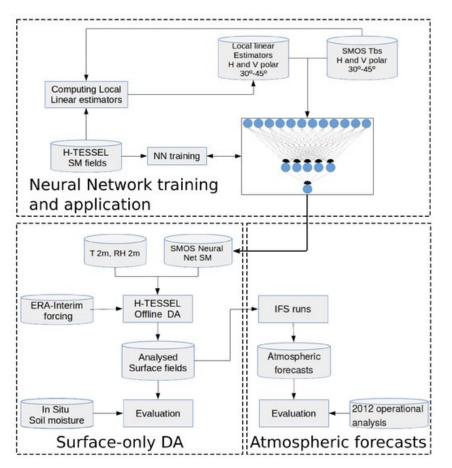


Fig 7: Experiment time series at St. Joseph and Little River stations



 Rodriguez-Fernandez et al., 2019: NN SM assimilation with spatially varying errors

- Neutral to positive improvements in SM
- Improvements of atmospheric forecasts in Southern Hemisphere

Fig 8: SMOS NN assimilation procedure

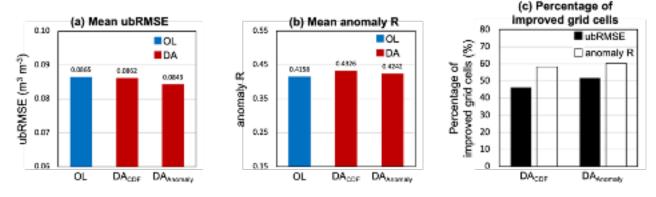


Fig 9: Average skill of two DA approaches at in situ stations

- Kwon, Kumar et al., in review: assimilate SMAP anomalies directly
- The anomaly DA provides comparable performance to CDF-matching and is more effective in incorporating unmodeled features such as irrigation

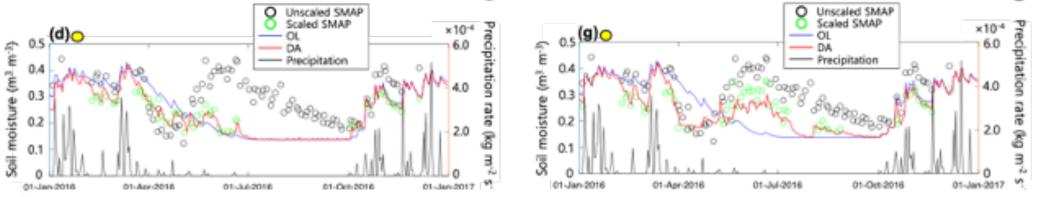


Fig 10: Comparison of two DA approaches at location with irrigation

Land observations for model calibration

Model calibration

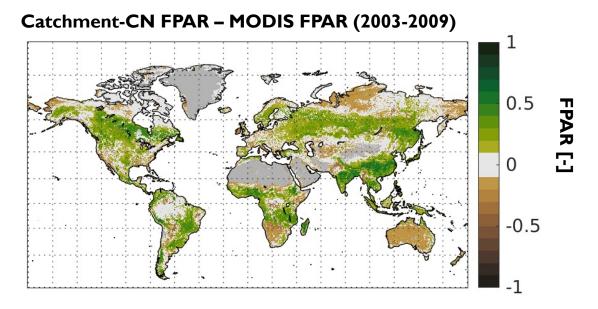


Fig II: Catchment-CN FPAR bias

Model calibration

- Calibration parameters:
 - Timing of phenological cycle (seasonal variability)
 - Photosynthetic efficiency (bias)
 - Carbon storage/allocation (interannual variability)

- Calibration approach:
 - Calibration period: 2003 2010
 - Cost function: FPAR RMSE.
 - Particle swarm (ensemble-based) optimization at select calibration locations
 - Separate parameters for each Plant Functional Type (PFT)

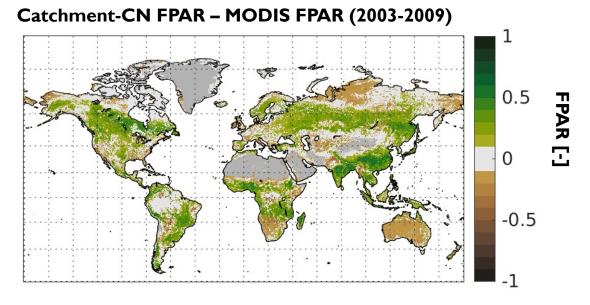


Fig 11: Catchment-CN FPAR bias

Model calibration: Impact on modeled FPAR

Global model simulation with new vegetation parameters evaluated against MODIS FPAR

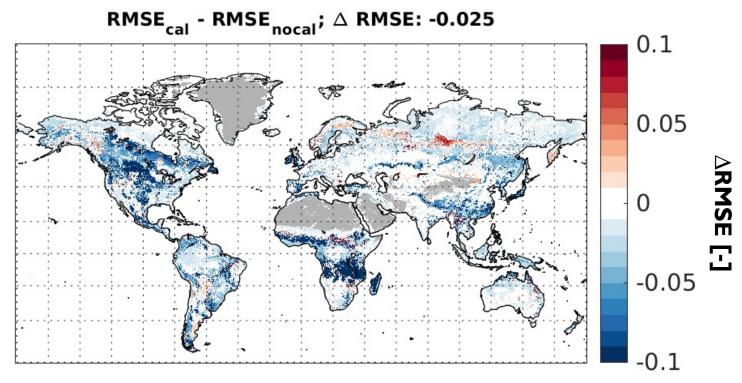
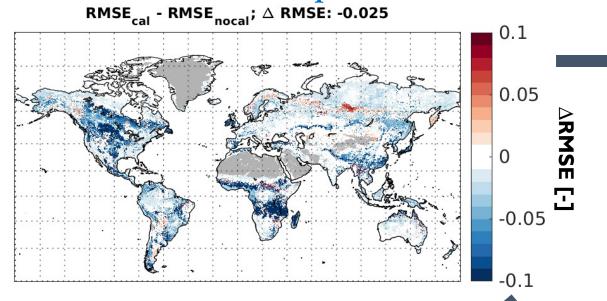


Fig 12: FPAR RMSE change resulting from calibration

Conclusion: Parameter estimation consistently reduces model RMSE with respect to MODIS FPAR

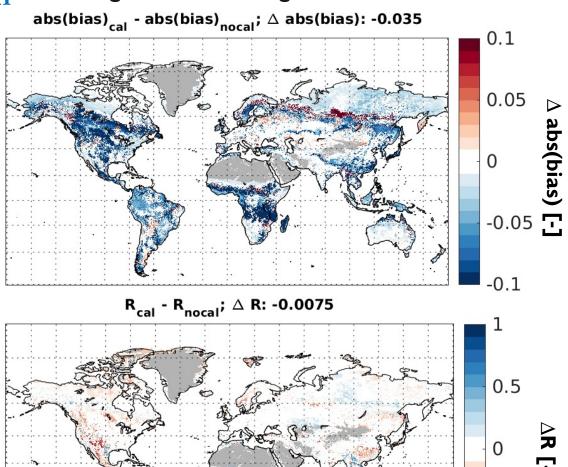
NASA

Model calibration: Impact of error distribution



- Reduction in RMSE is driven by bias reduction
- Dominance of bias in model error skews calibration towards efficiency parameters

Fig 13: RMSE change breakdown

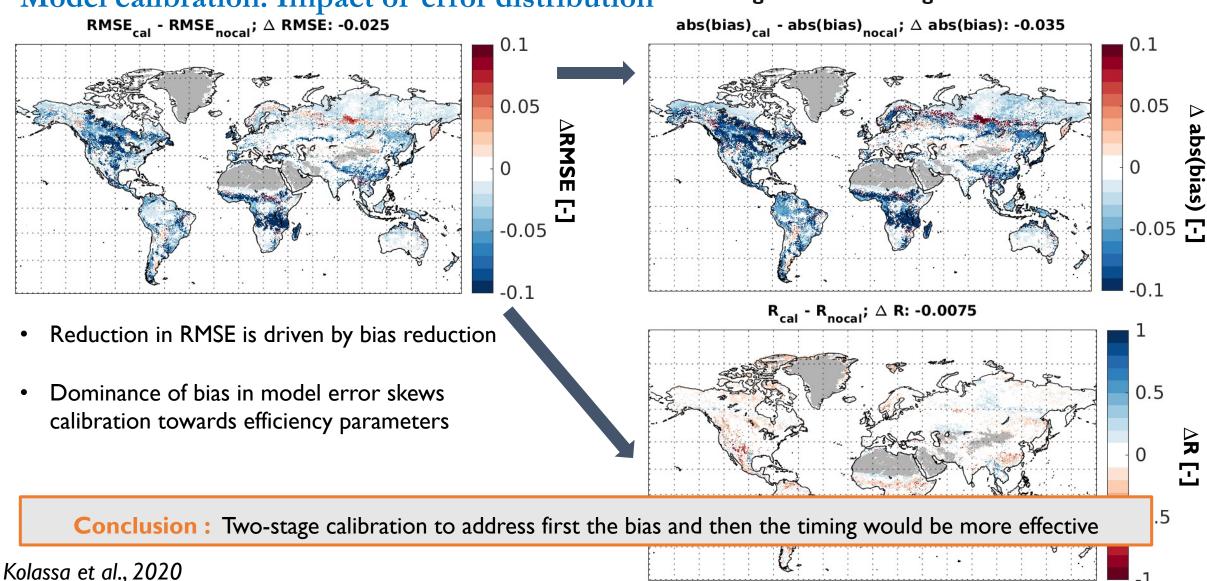


Kolassa et al., 2020

-0.5

Model calibration: Impact of error distribution

Fig 13: RMSE change breakdown



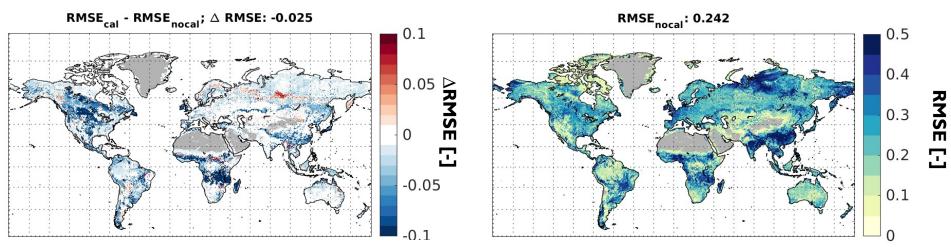


Fig 15: RMSE change relative to total RMSE

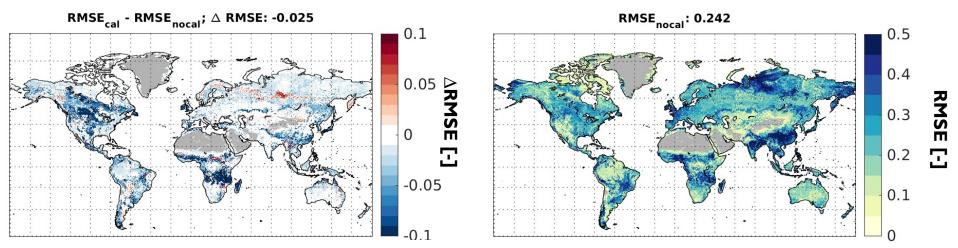
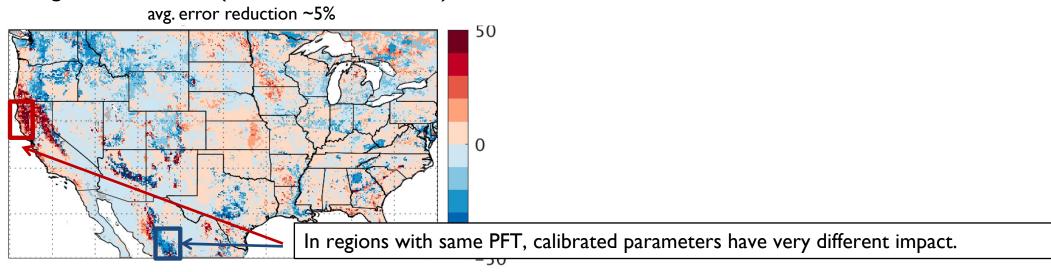


Fig 15: RMSE change relative to total RMSE

Fig 16: Initial \triangle RMSE (calibrated – uncalibrated)



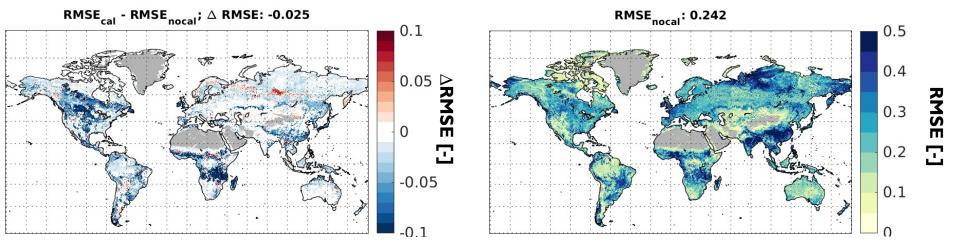
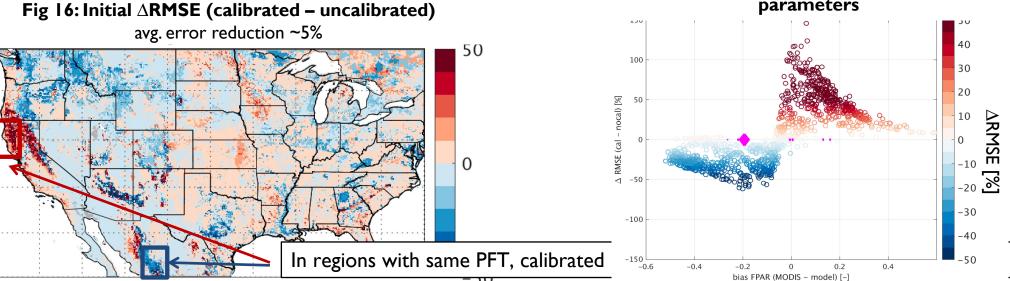
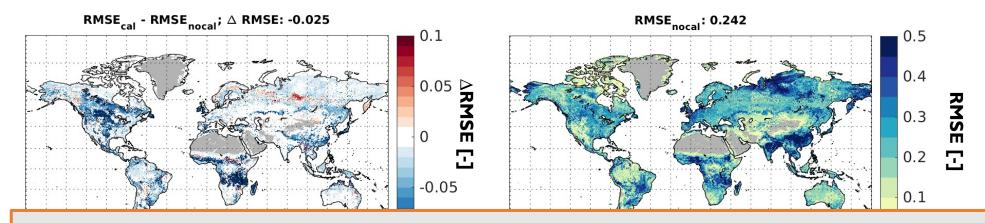


Fig 15: RMSE change relative to total

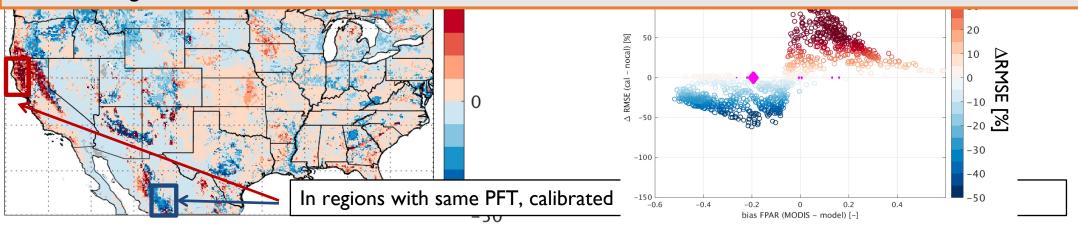
| Fig 17: original bias vs. impact of updated parameters





Conclusion:

- Model structural errors are 'aliased' onto parameters during calibration
- Remaining errors are due to errors in model structure



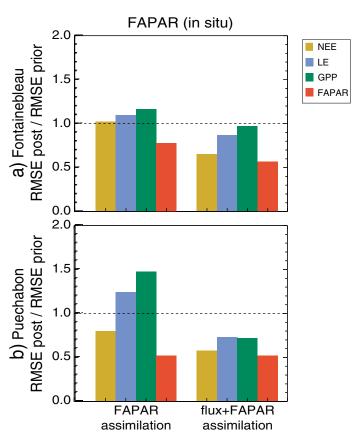


Fig 18: FPAR
Calibration Impact on vegetation fluxes

Bacour et al., 2015: parameter estimation with FPAR alone improved FPAR skill, degraded skill of other vegetation variables

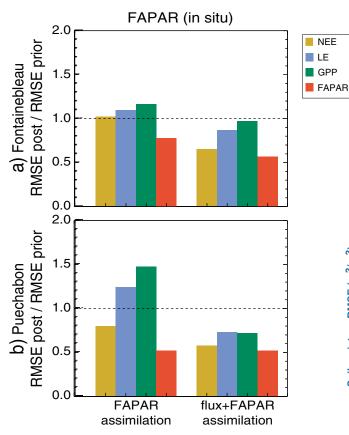


Fig 18: FPAR
Calibration Impact on vegetation fluxes

Bacour et al., 2015: parameter estimation with FPAR alone improved FPAR skill, degraded skill of other vegetation variables

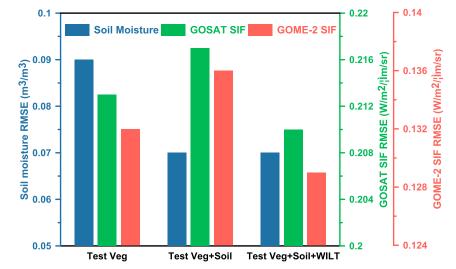


Fig 19: Parameter calibration impact on hydrology and vegetation

Qiu et al., 2017: hydraulic parameter calibration alone improved soil moisture skill, but degrades modeled SIF

- Impact of assimilating land observations on forecast skill in NWP systems is often positive, but very small (e.g.,
 Draper et al., 2012, Rodriguez-Fernandez et al. 2019, Carrera et al., Reichle et al. in review)
 - I. Land influence on atmosphere is not universal
 - 2. Impact of single new data type in system that assimilates $\sim 10^6$ observations

- Impact of assimilating land observations on forecast skill in NWP systems is often positive, but very small (e.g., Draper et al., 2012, Rodriguez-Fernandez et al., Carrera et al. 2019, Reichle et al. in review)
 - I. Land influence on atmosphere is not universal
 - 2. Impact of single new data type in system that assimilates ~10^6 observations
- In certain conditions land influence on atmosphere is significantly more important than usual: extreme conditions
 - 1. Droughts and heatwaves (e.g., Seneviratne et al., 2015)
 - 2. Tropical Cyclones

- Impact of assimilating land observations on forecast skill in NWP systems is often positive, but very small (e.g.,
 Draper et al., 2012, Rodriguez-Fernandez et al., Carrera et al. 2019, Reichle et al. in review)
 - I. Land influence on atmosphere is not universal
 - 2. Impact of single new data type in system that assimilates ~10^6 observations
- In certain conditions land influence on atmosphere is significantly more important than usual: extreme conditions
 - I. Droughts and heatwaves (e.g., Seneviratne et al., 2015)
 - 2. Tropical Cyclones
- Very wet land surface \rightarrow help to sustain or re-intensify TC ("Brown Ocean Effect")
 - Dry land surface \rightarrow faster TC dissipation
- Soil moisture gradients → different TC over-land track
- SMAP data assimilation \rightarrow better land surface initial conditions \rightarrow better TC forecasts \rightarrow societal benefit

Q: Can the assimilation of SMAP observations into a global numerical weather prediction (NWP) model improve the prediction of tropical cyclone (TC) evolution prior to and after landfall?

Observing System Experiment to determine the potential of SMAP data assimilation to improve forecasts of tropical cyclone structure and precipitation surrounding landfall.

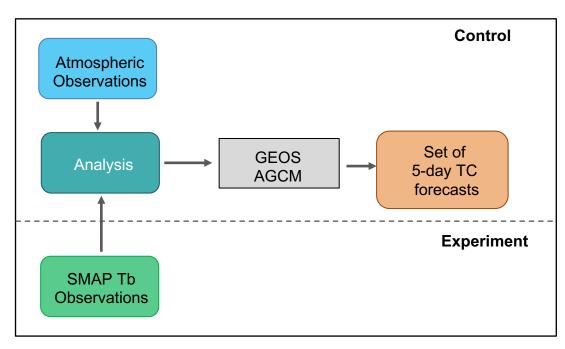


Fig 21: Experiment design schematic

Control:

 Forecasts of TC from analysis constrained by standard suite of atmospheric observations

Experiment:

 Additional constraint through SMAPTb observations

Evaluation:

 Combination of global skill metrics, regional tailored metrics and phenomenological approaches to evaluate impact on TC forecast skill

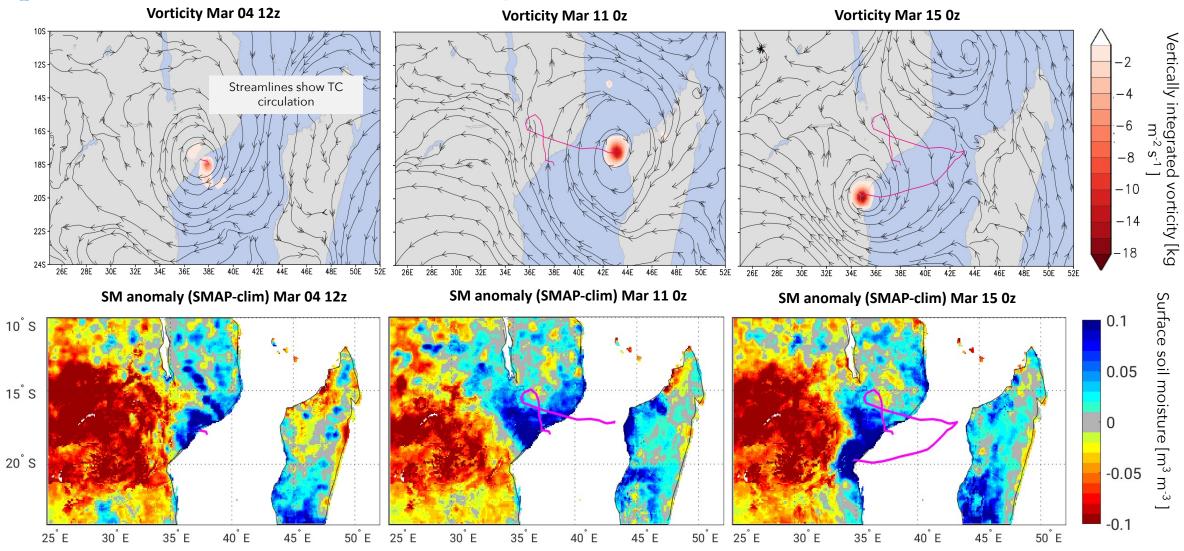


Fig 22: TC Idai evolution of vorticity, circulation and soil moisture conditions

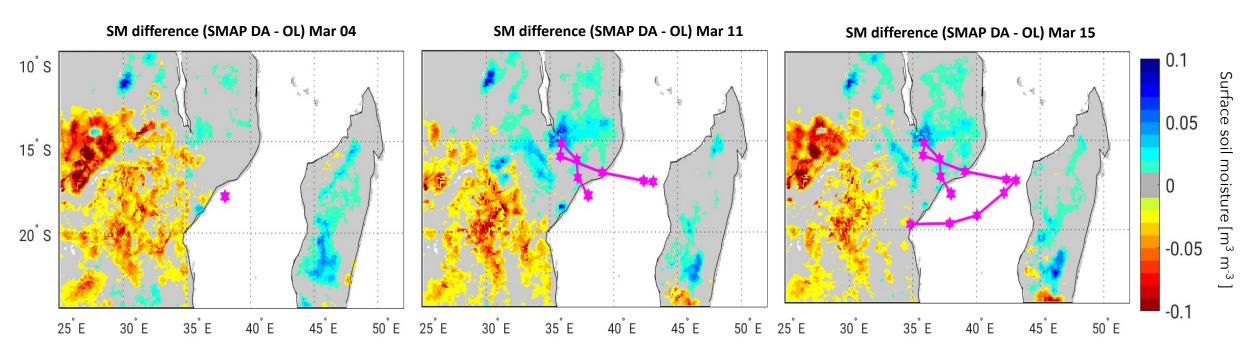


Fig 23: SMAP L4 difference with respect to open loop for Idai period

- The SMAP DA run captures the wetter than normal conditions better than a model run that is not constrained by SMAP
- → By assimilating SMAP we could improve the forecast of Idai's behavior

Evaluating data assimilation impact

- For soil moisture, evaluation is frequently against in situ observations
 - I. At locations with in situ stations, models are already very skillful

2. Satellite observations (and models) contain very little information about point scale soil moisture variability

Table 3Breakdown of the Information-Use Efficiency Metrics From an EnKF Assimilation of LPRM Retrievals Into the Noah-MP Land Surface Model as Evaluated Against SCAN Data

Measurement	Metric	Value
Information in model simulations"	$\frac{I(Z;X)}{H(Z)}$	0.13
Information in retrievals ^a	$\frac{I(Z;Y)}{H(Z)}$	0.08
Total information from model and retrievals ^a	$\frac{I(Z;X,Y)}{H(Z)}$	0.18

Evaluating data assimilation impact

• Dong et al., 2019: Relative skill evaluation using a third (independent) product

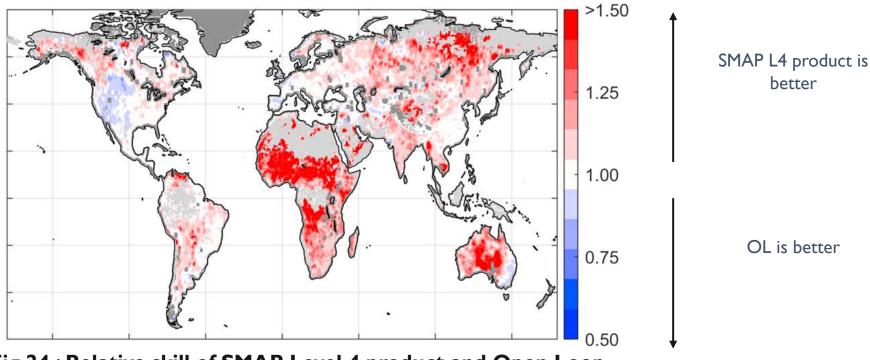


Fig 24: Relative skill of SMAP Level 4 product and Open Loop

• "ground validation conducted in data-rich areas does not adequately sample the added value of SMAP data assimilation ... and substantially underestimates the added skill provided by the SMAP level 4 system."

Conclusions and Outlook

Conclusions:

- Accurate observation error characterization is critical
- Need to improve efficiency of DA systems → better DA approaches, better observations, better correspondence between model and observations
- Parameter calibration should be performed in conjunction with improvements to model structure
- Alternative ways to assess the impact of land observations in NWP systems
- Reconsider how we evaluate land analyses

Outlook:

- Coupling in NWP systems and ESMs
- Increasing correspondence between modeled and observed variables
- Use of machine learning or hybrid techniques when process knowledge is uncertain
- Land DA community to improve internal collaboration as well as coordination with other communities
 - → AIMES Land Data Assimilation Working Group https://aimesproject.org/ldawg/

References:

- [1] Bacour, C., Peylin, P., MacBean, N., Rayner, P.J., Delage, F., Chevallier, F., Weiss, M., Demarty, J., Santaren, D., Baret, F. and Berveiller, D., 2015. Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model. *Journal of Geophysical Research: Biogeosciences*, 120(9), pp. 1839-1857.
- [2] Carrera, M.L., Bilodeau, B., Bélair, S., Abrahamowicz, M., Russell, A. and Wang, X., 2019. Assimilation of passive L-band microwave brightness temperatures in the Canadian Land Data Assimilation System: Impacts on short-range warm season numerical weather prediction. *Journal of Hydrometeorology*, 20(6), pp. 1053-1079.
- [3] Dong, J., Crow, W., Reichle, R., Liu, Q., Lei, F. and Cosh, M.H., 2019. A global assessment of added value in the SMAP Level 4 soil moisture product relative to its baseline land surface model. *Geophysical Research Letters*, 46(12), pp.6604-6613.
- [4] Draper, C.S., Reichle, R.H., De Lannoy, G.J.M. and Liu, Q., 2012. Assimilation of passive and active microwave soil moisture retrievals. Geophysical Research Letters, 39(4).
- [5] Kolassa, J., Aires, F., Polcher, J., Prigent, C., Jimenez, C. and Pereira, J.M., 2013. Soil moisture retrieval from multi-instrument observations: Information content analysis and retrieval methodology. *Journal of Geophysical Research: Atmospheres*, 118(10), pp.4847-4859.
- [6] Kolassa, J., Reichle, R.H. and Draper, C.S., 2017. Merging active and passive microwave observations in soil moisture data assimilation. Remote Sensing of Environment, 191, pp.117-130.
- [7] Kolassa, J., Reichle, R.H., Liu, Q., Cosh, M., Bosch, D.D., Caldwell, T.G., Colliander, A., Holifield Collins, C., Jackson, T.J., Livingston, S.J. and Moghaddam, M., 2017b. Data assimilation to extract soil moisture information from SMAP observations. *Remote sensing*, 9(11), p.1179.
- [8] Kolassa, J., Reichle, R.H., Liu, Q., Alemohammad, S.H., Gentine, P., Aida, K., Asanuma, J., Bircher, S., Caldwell, T., Colliander, A. and Cosh, M., 2018. Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote sensing of environment, 204, pp.43-59.
- [9] Koster, R.D., Guo, Z., Yang, R., Dirmeyer, P.A., Mitchell, K. and Puma, M.J., 2009. On the nature of soil moisture in land surface models. Journal of Climate, 22(16), pp.4322-4335.
- [10] Kumar, S.V., Reichle, R.H., Harrison, K.W., Peters-Lidard, C.D., Yatheendradas, S. and Santanello, J.A., 2012. A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resources Research, 48(3).
- [11] Kwon, Y., S.V. Kumar, et al., Direct use of SMAP soil moisture anomalies improves irrigation characterization through data assimilation, in review
- [12] Nearing, G., Yatheendradas, S., Crow, W., Zhan, X., Liu, J. and Chen, F., 2018. The efficiency of data assimilation. Water resources research, 54(9), pp.6374-6392.
- Qiu, B., Xue, Y., Fisher, J.B., Guo, W., Berry, J.A. and Zhang, Y., 2018. Satellite chlorophyll fluorescence and soil moisture observations lead to advances in the predictive understanding of [13] global terrestrial coupled carbon-water cycles. Global Biogeochemical Cycles, 32(3), pp.360-375.
- [14] Reichle, R., Zhang, Q.S., et al. (2021) Assimilation of SMAP Brightness Temperature Observations in the GEOS Land-Atmosphere Data Assimilation System, JSTARS SMAP Special Issue (in review)
- [15] Rodríguez-Fernández, N., de Rosnay, P., Albergel, C., Richaume, P., Aires, F., Prigent, C. and Kerr, Y., 2019. SMOS neural network soil moisture data assimilation in a land surface model and atmospheric impact. Remote Sensing, 11(11), p.1334.

Thank you!

