

Outline

- ✓ Overview of the EUMETSAT missions
- √ Focus on the current and future hyperspectral sounders
 - ✓ IASI experience
 - √ Future IASI-NG and MTG-IRS missions
 - ✓ Focus on the MTG-IRS challenges
- ✓ Atmospheric composition
- ✓ Overview of the other hyperspectral sounders missions

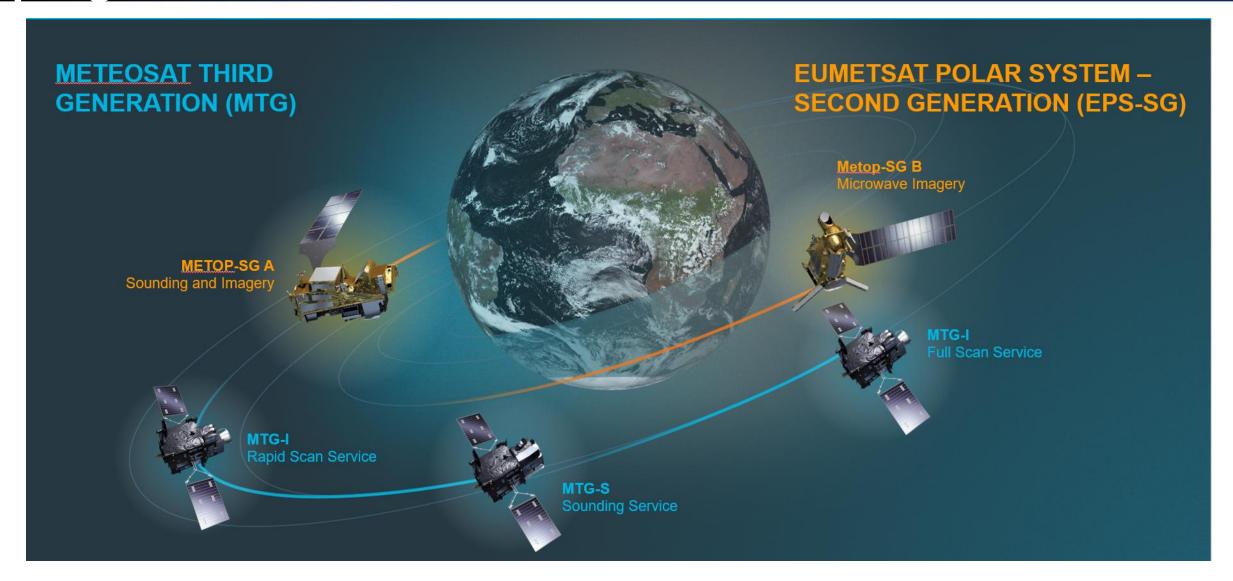
EUMETSAT

Who we are?

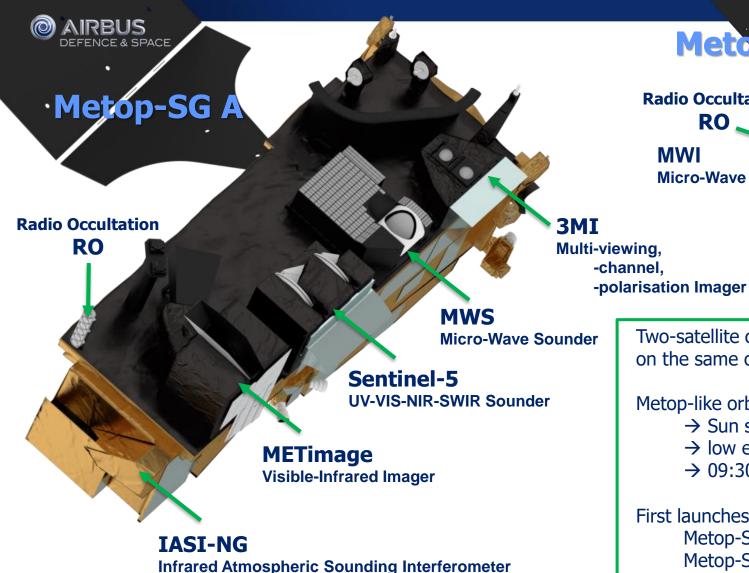
- ✓ EUMETSAT is the European operational satellite agency for monitoring weather, climate and the environment from space.
- ✓ We are an intergovernmental organisation based in Darmstadt, Germany, currently with 30 Member States.

What do we do?

- ✓ We operate a system of meteorological satellites that observe the atmosphere and ocean and land surfaces 24 hours a day, 365 days a year.
- ✓ This data is supplied to the National Meteorological Services of the organisation's Member and Cooperating States in Europe, as well as other users worldwide.


EUMETSAT missions – current and future

The need for two types of meteorological satellites


EUMETSAT Future focus: Two highly innovative programmes

Classification

EPS-SG: Metop-SG satellites

- New Generation

Metop-SCA **Scatterometer Radio Occultation** RO MWI **Micro-Wave Imager** ICI sub-mm wave Ice Cloud Imager

Two-satellite configuration Metop-SG-A and –B on the same orbit, separated by 90°

Metop-like orbit:

- → Sun synchronous
- → low earth orbit at 835 km mean altitude
- → 09:30 local time of the descending node

First launches:

Metop-SG A1 \rightarrow Early 2024

Metop-SG B1 → Early 2025

EPS-SG benefits to activities of NMSs

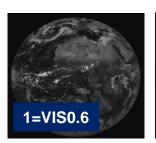
Main Payload	Enhanced Capabilities	Innovative Capabilities	Applications Benefiting
High-Resolution Infrared Sounding (IASI-NG)	Higher spectral resolution (Twice better than IASI) + Better radiometric noise (half IASI)	More trace gases and their vertical profiles	NWP, NWC, AC, CM, Oceanography
Microwave Sounding (MWS)	Enhanced spatial over-sampling	Ice-cloud info in support of water- vapour profiling	NWP, NWC, CM, Hydrology
Radio Occultation Sounding (RO)	Large increase of number of radio- occultations	Tracking of Galileo, Beidou and QZSS signals	NWP, CM
Nadir viewing UV/VIS/NIR/SWIR Sounding (Sentinel-5)	Drastic increase of spatial resolution	Additional trace gas measurements; CO ₂ being studied	Air Quality, CM, AC
VIS/IR Imaging (METimage)	Better radiometric and spatial resolution	Far more variables measured with higher accuracy	NWC, NWP, CM, Land-surface analysis, Oceanography, Hydrology
Scatterometry (SCA)	Higher spatial resolution and coverage	Cross polarisation for higher wind speeds	NWP, NWC, CM, Hydrology, Oceanography
Multi-viewing, -channel, - polarisation Imaging (3MI)	New mission	Aerosol parameters	Air quality, CM, NWC, Land surface analysis
Microwave Imaging (MWI)	New mission	Precipitation observations	NWP, NWC, Hydrology, CM, Oceanography
Ice Cloud Imaging (ICI)	New mission	Cloud microphysics parameters	NWP, NWC, Hydrology, CM

NWP: Numerical Weather Prediction; NWC: Nowcasting; CM: Climate Monitoring; AC: Atm. Composition

MTG-I imaging mission

- Imagery mission implemented by two MTG-I satellites
- Full disc imagery every 10 minutes in 16 bands with the <u>Flexible Combined Imager</u> (FCI)
- Fast imagery of Europe every 2.5 minutes
- New <u>Lightning Imager</u> (LI)
- First launches:
 - MTG-I1 → Late 2022
 - MTG-I2 → 2025

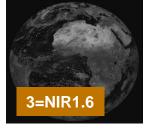
Classification


- Start of operations in 2023
- Operational exploitation: ~2023-2043

MTG-S sounding mission

- Hyperspectral infrared sounding mission
- 3D weather cube: temperature, water vapour, O3, every 30 minutes over Europe
- Air quality monitoring and atmospheric chemistry in synergy with Copernicus <u>Sentinel-4</u> instrument
- First launches:
 - MTG-S1 → Early 2024
- Start of operations in late 2024/early 2025
- Operational exploitation:
 - ~2024-2044

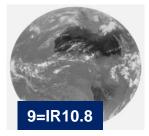
CURRENT AND FUTURE IMAGERS CHANNELS: MSG SEVIRI AND MTG FCI

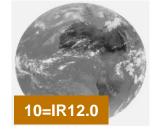


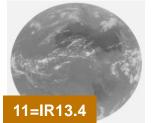
SSD: 1km

SSD: 3km

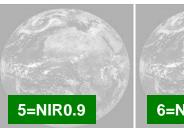


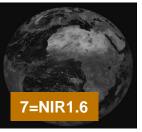




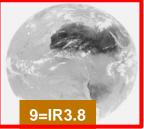


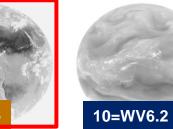
Current SEVIRI

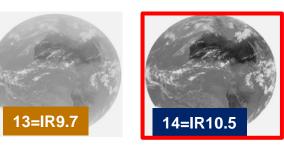

CURRENT AND FUTURE IMAGERS CHANNELS: MSG SEVIRI AND MTG FCI



Solar channels provided at 1.0 km (& 0.5 km) resolution

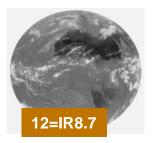


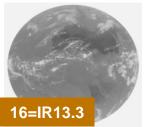


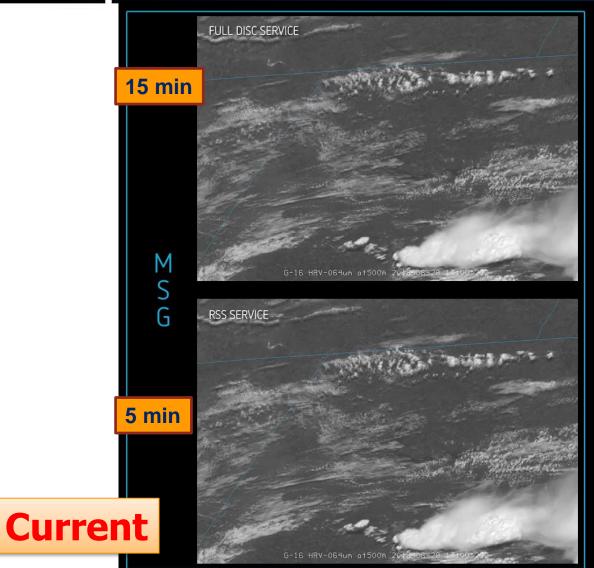

✓ Continuity

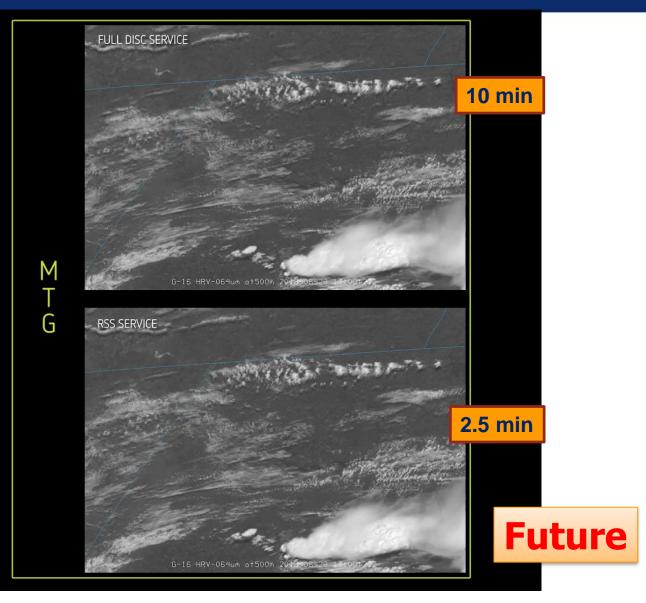
✓ Innovation

Thermal channels provided at 2 km (& 1 km) resolution









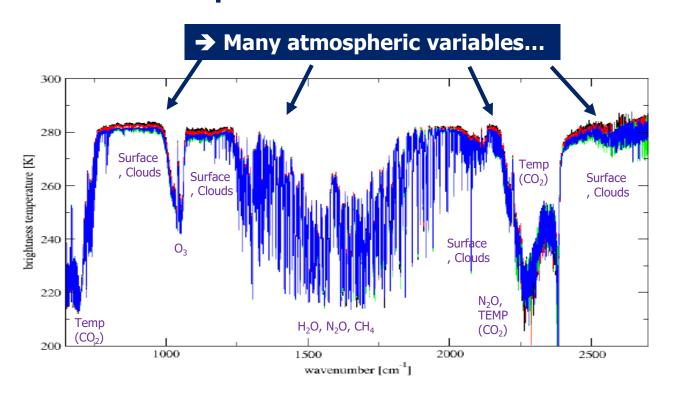
Future FCI

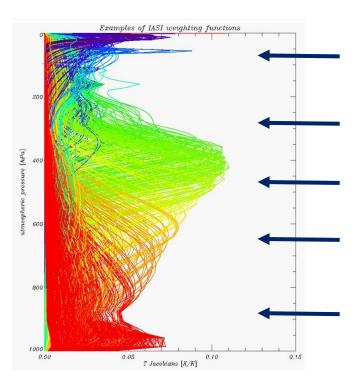
MTG Imager (FCI): New insights through higher

temporal resolution

MTG Lightning imaging mission

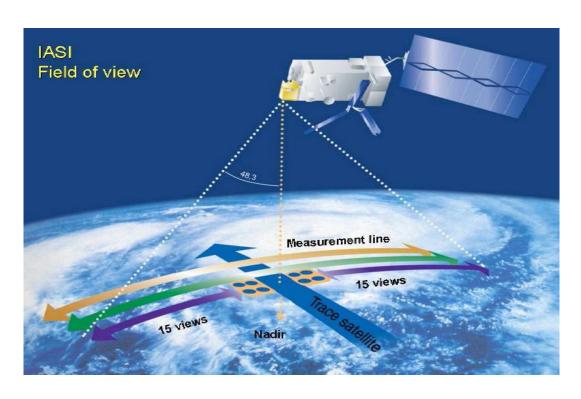
- Lightning is a precursor of severe weather, with a lead time of tens of minutes
- Most ground-based lightning location systems are mainly sensitive to cloud-toground lightning (CG)
- Often, no increase in CG due to "weather intensification" observable → Total lightning is the parameter of interest


Total lightning = cloud-to-ground + cloud-to-cloud lightning


Hyperspectral sounders

Both programmes will have an Hyperspectral sounder

- ✓ The first hyperspectral sounder part of the EUMETSAT programme was launched on Metop-A in 2006
- ✓ It was a step forward in infrared sounding, as it was the first one providing continuous spectra with 8461 channels:



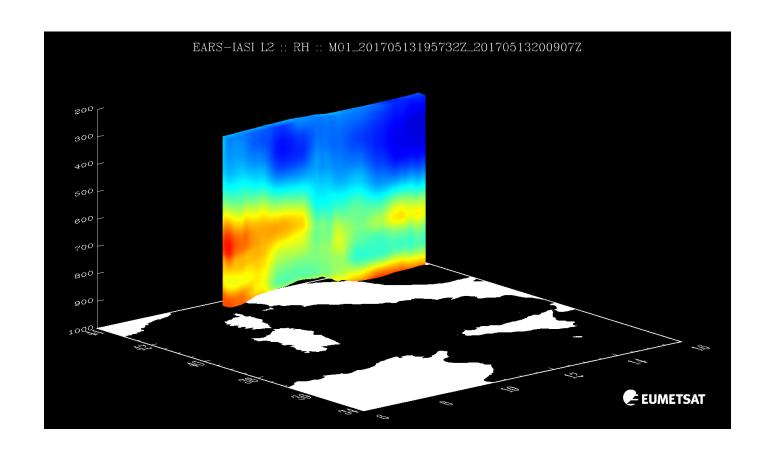
→ More than 25 species can be observed

... located at different altitudes

Current hyperspectral infrared sounder: IASI

Normal Operation Mode

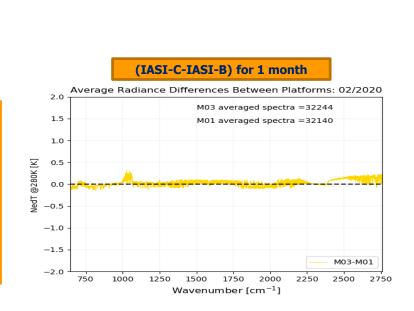
- ✓ Scanning the swath
- √ (30 Earth views + 2BB + 2CS) / 8 seconds


IASI		
Spectral characteristics		
Maximum OPD	2 cm	
Spectral resolution	0.5 cm ⁻¹	
Spectral sampling	0.25 cm ⁻¹	
Spectral coverage	645-2760 cm ⁻¹	
	(3 bands are merged)	
Spectral accuracy	< 2 ppm	
Radiometric characteristics		
Radiometric noise 0.5 K		
Geometric cl	haracteristics	
Field of view	12 km	
Swath width	2100 km	
Detector matrix	2x2 pixels	
	covering 50x50 km ²	

Flying IASI: 3 polar orbiting instruments on:

- ✓ Metop-A since October 19th, 2006
- ✓ Metop-B since September 17th, 2012
- ✓ Metop-C since November 7th, 2018

IASI Temperature and Humidity in 3D



IASI – Very well calibrated

IASI:

- ✓ Provides continuous spectra from 3.62 to 15.5 µm
- √ Fine spectral sampling of 0.25 cm⁻¹
- ✓ Accurate radiometric and spectral calibration
 - → Very good stability and accuracy over the 3 Metops

IKFS-2

1400

1600 1800

Wavenumber [cm-1]

2000

2200 2400 2600 2800

320 310 \(\Sigma\)

280

270 260

250

1000

1200

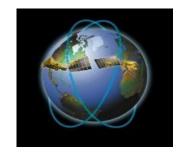
BTS

→ IASI is a <u>worldwide GSICS reference for all infrared sounders and imagers</u>

IASI used as a reference

<u>Because of IASI</u> very good stability and accuracy, it is taken as a reference for all any cross-calibration of the other hyperspectral instruments, <u>but</u> IASI (IASI-NG, IRS) does not provide an absolute calibration.

Only such instrument like Infrared Absolute Radiance Interferometer (ARI) for CLARREO (Climate Absolute Radiance and Refractivity Observatory) or TRUTH (Traceable Radiometry Underpinning Terrestrial- and Helio-Studies) mission would establish an SI-traceable space-based climate and calibration observing system to improve confidence in climate-change forecasts — a kind of 'standards laboratory in space'.


Moon calibration experiment with IASI is on-going at CNES to give IASI an absolute calibration target.

Programmes including hyperspectral IR sounders

Future Hyperspectral Infrared instruments operated by EUMETSAT will be flying on two kind of satellites:

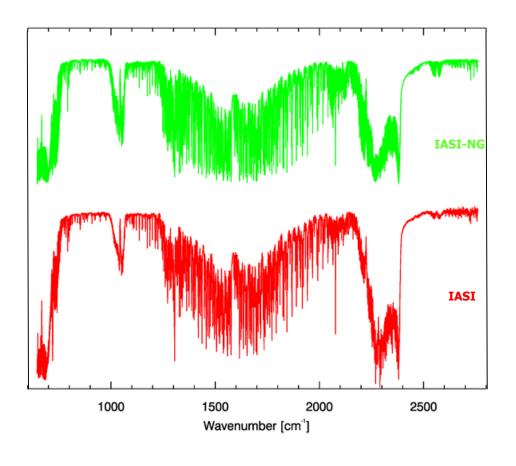
Future Polar orbit Mission

The EPS-SG (EUMETSAT Polar System - Second Generation) program with the IASI-NG (IASI - New Generation) instruments, on three satellites from 2023 onwards, will be a continuation of the EPS program with three flying IASI instruments on the Metop satellites.

Future Geostationary mission

A step forward wrt IASI, with an hyperspectral sounder, the IRS (InfraRed Sounder), on-board the Meteosat Third Generation (MTG). MTG will see the launch of six new geostationary satellites from 2021 onwards. The satellite series will be based on 3-axis platforms and comprise:

Four Imaging Satellites (MTG-I) (20 years of operational services expected) Two Sounding Satellites (MTG-S) (15.5 years of operational services expected)



The IRS (InfraRed Sounder) will be flying on MTG-S satellites.

IASI-NG mission on LEO orbit

IASI-NG is a continuation of the IASI mission: Michelson interferometer + Mertz compensation:

- √ Same scanning mode than IASI
- ✓ Maximum OPD: 4 cm (on ground) i.e. a spectral sampling (0.125 cm⁻¹) and resolution of 0.25 cm⁻¹ → Better than IASI (0.25 cm⁻¹ and 0.5 cm⁻¹ respectively)
- ✓ Detector: 12 km resolution at nadir
- ✓ Spectral coverage: 645 2760 cm⁻¹
- ✓ Half of the IASI radiometric noise

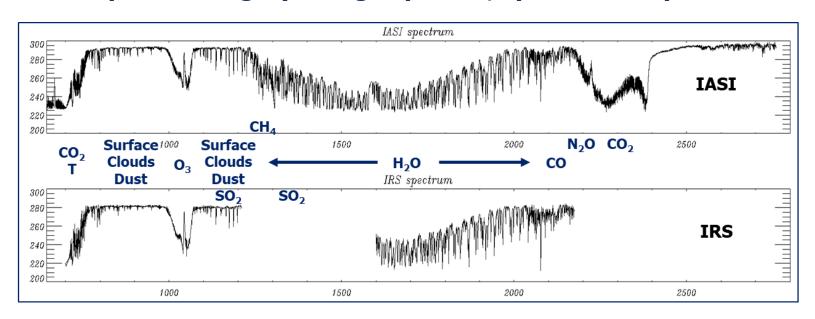
IASI-NG mission

Breakthrough

- Doubling of spectral and increase of radiometric resolution of IASI for the benefit of weather forecast and atmospheric composition
 - 75% more information in temperature profiling, particularly PBL
 - 30 % more information in water vapour profiling
 - Quantification of trace gases which are currently only detected
 - Vertical resolution of trace gases instead of columnar amounts only

Objectives / products

- Temperature/humidity profile at high vertical resolution in clear air
- ✓ Clouds, trace gases (O3, CO, CH4, CO2,...)
- ✓ Sea/land/ice surface temperature
- ✓ Aerosols, Volcanic Ash


Applications benefitting

- ✓ Numerical weather prediction
- ✓ Nowcasting
- Climate monitoring
- Oceanography
- ✓ Atmospheric composition

MTG Infra-Red Sounder (IRS) on GEO orbit

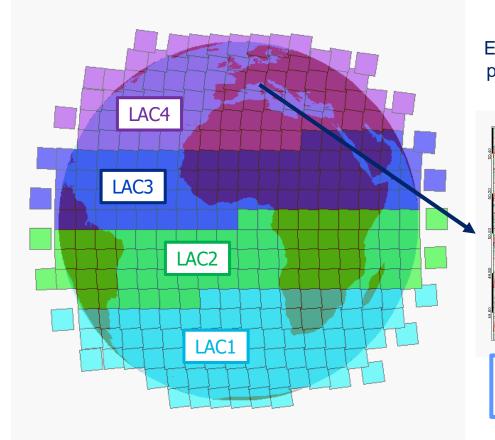
Operational spectro-imagery at high spectral, spatial & temporal resolution

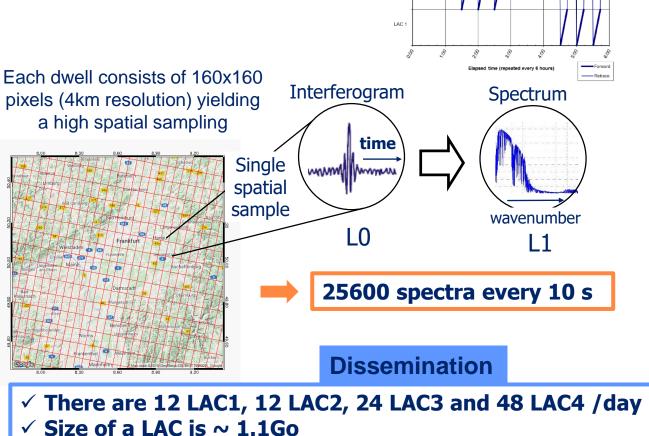
Two spectral bands:

- ✓ LWIR: 680 to 1210 cm⁻¹ (8.26–14.70 μm)
- ✓ MWIR: 1600 to 2250 cm⁻¹ (4.44–6.25 μ m)

Spectral sampling: ~0.6 cm⁻¹

Spatial resolution :4 km at nadir spatial


Applications benefitting

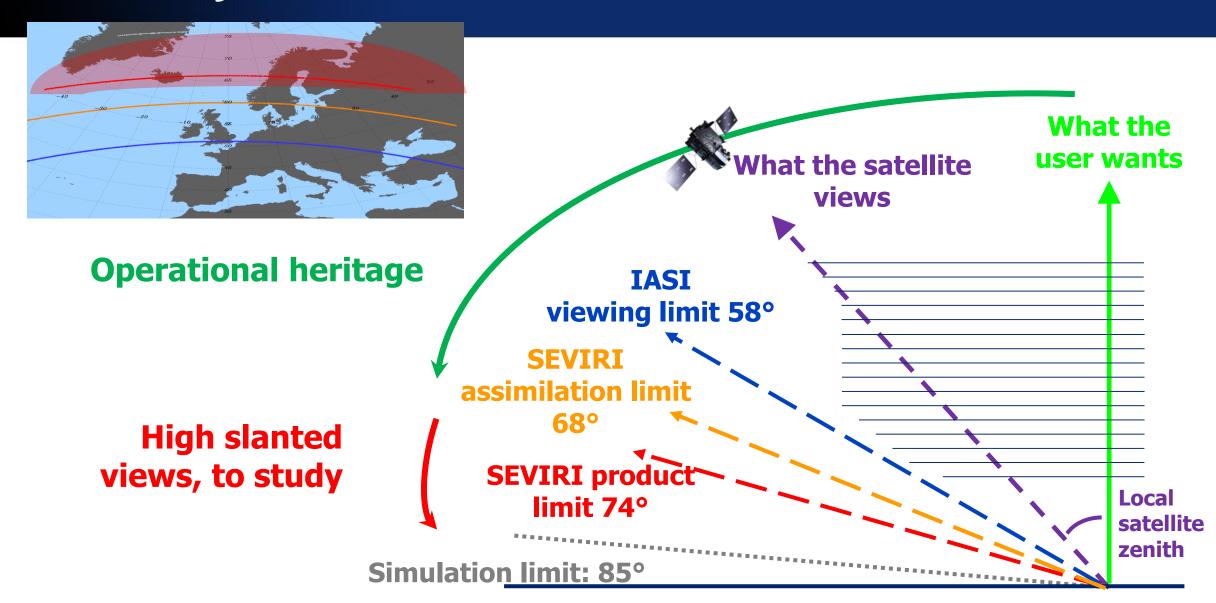

- ✓ Numerical weather prediction
- Nowcasting
- Climate monitoring
- ✓ Oceanography
- ✓ Atmospheric composition

MTG Infra-Red Sounder (IRS) scanning sequence

- ✓ The Earth disk is split in 4 Local Area Coverage (LAC) zones, each of them covered in 15 min by a succession of "steps and stares" called dwells
- ✓ LAC4 (northern mid-latitudes) will be covered every 30 minutes
- ✓ LAC1, 2, 3 will be alternatively viewed in-between

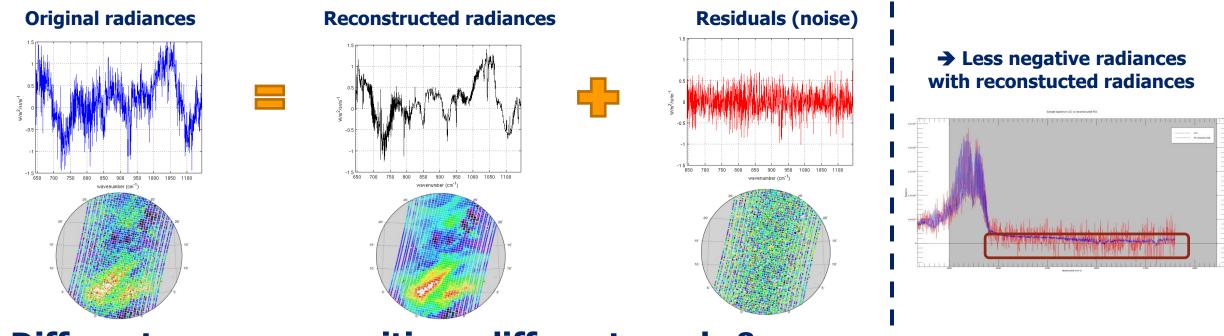
New technologies → **New calibration processing**

	IASI	IASI-NG	IRS
	Instrument Single laser	Instrument Multiple lasers Field compensation (hardware)	<u>Instrument</u> Multiple lasers
On-board	On-board processing Non-linearity correction Spike detection Radiometric calibration	On-board processing Non-linearity correction Spike detection	On-board processing Non-linearity correction Spike detection Field compensation (software)
	L1 processing Spectral calibration Spectral resampling	Spectral calibration and shape removal	Light apodisation Radiometric calibration
On-ground	Spectral shape removal and strong apodisation	Strong apodisation Spectral resampling Radiometric calibration	Spectral calibration Spectral resampling Spectral shape removal

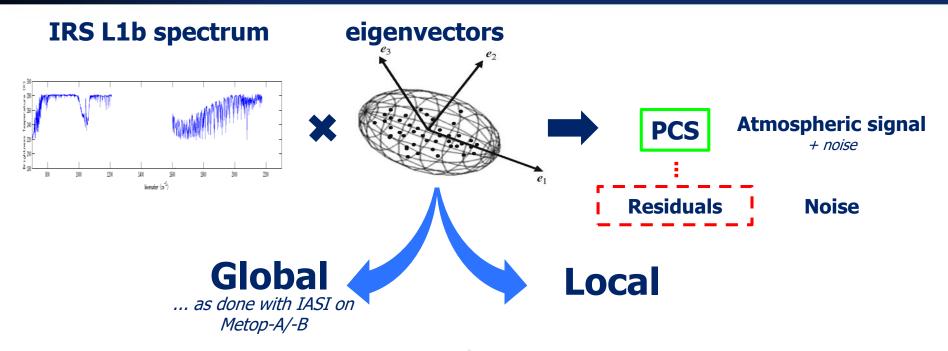

- ✓ Different place to apply the radiometric calibration
- ✓ New: field compensation (software and hardware) leads to different spectral calibration
- ✓ Different apodisation function
- ✓ Different places to remove the instrument Spectral Response Function (Spectral unformisation)

Challenges of MTG-IRS mission

- → Slanted views
- → Huge amount of data → PC compression


To be ready for MTG-IRS → Slanted views

Dissemination of the IRS radiances


IRS radiances dissemination baseline is only in Principal Component!!!

Different user communities - different needs & concerns:

- ✓ AC/AQ fear information loss, e.g. spectral signatures not present in the training base
- ✓ NWP concerned about DA configuration: retuning obs. error, channels selection, bias correction...
- \checkmark NWP required rare (to no) changes of eigenvector basis, with long notice and test data upfront

2 options have been studied: Global & local PCs

	Global	Local	
User	Static EV basis	New EV basis / dwell	
	(PCS + quality indicators)/pix	(PCS + quality indicators)/pix + EV/dwell	
	Less noise in leading PCs Weak signal distinguished from noise	More noise in leading PCs oise Less noise/signal separation	
	New features not retained in PCS → EV basis update may be required	All local "strong enough" signals retained in leading scores	

New methodology: Hybrid approach

EUM new solution: compress with global (static) and local (granule-based) eigenvectors

- 1. A global (static) eigenvector basis is derived from an as exhaustive as possible training set
- 2. A local eigenvector basis is dynamically derived from the residuals in a data granule (i.e. what is left after PC compression with the static global eigenvectors).

The combined global+local is referred to as PC-hybrid compression

- → Several uptake studies on-going
- → Operational roll-out planned end 2021. User announcement + test data released on 03/06/2021

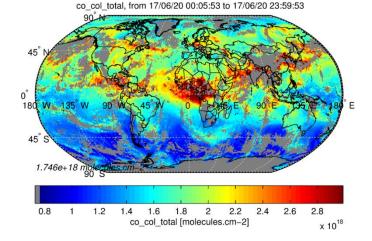
 https://www.eumetsat.int/changes-pc-compressed-iasi-l1c-data

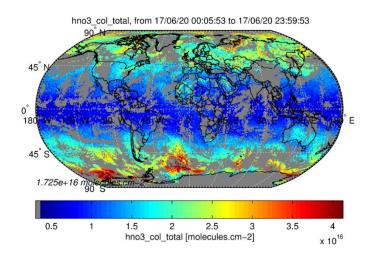
What about the atmospheric composition products?

AC products with IASI-NG

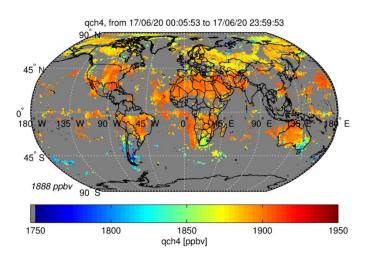

AC Products	Developer	IASI heritage?	
CO profile	AC SAF	Yes	
CO partial column	AC SAF	Yes	
Methane (CH ₄) partial column	HQ	Yes	
Nitric acid (HNO ₃) partial column	AC SAF	Yes	
Nitrous oxide (N ₂ O) total column	HQ	Yes	
Ozone (O ₃) profile	AC SAF	Yes	
Ozone (O ₃) total column	AC SAF	Yes	
Sulphur dioxide (SO ₂) total column	AC SAF	Yes	

→ Few examples of current IASI AC products are provided in the next slides




Some examples of AC products with IASI / IASI-NG

O₃ total column



CO total column

HNO₃ total column

CH₄ partial column

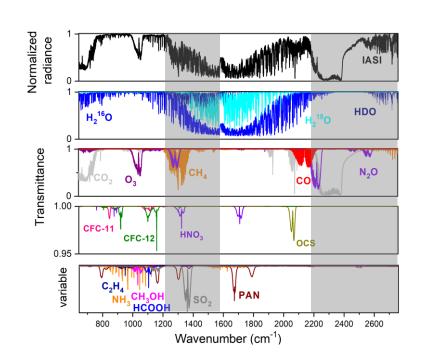
Improvements expected with IASI-NG

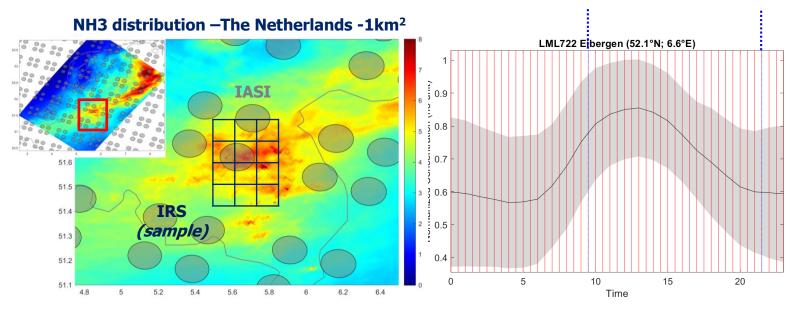
AC Products	With IASI		With IASI-NG	
	Vertical res.	Accuracy	Vertical res.	Accuracy
CO profile	N/A	20%	3 km	LT: 30% MT: 25% HT, S: 20%
CO partial column	N/A	20%	3 km	20 %
Methane (CH ₄) partial column	N/A	20%	LT: 3km S: 5km	LT: 12% S: 30%
Nitric acid (HNO ₃) partial column	N/A	20%	T, S	20%
Nitrous oxide (N ₂ O) total column	N/A	20%	N/A	10%
Ozone (O ₃) profile	7 km at pressures < 30 hPa 10 km at pressures > 30 hPa	15 % at pressures < 30 hPa 50 % at pressures > 30 hPa	3 km	LT,MT, UT: 20% S: 10%
Ozone (O ₃) total column	N/A	5%	N/A	5%
Sulphur dioxide (SO ₂) total column	N/A	N/A	N/A	50%

(LT: Lower Troposphere, MT: Middle Troposphere, UT: Upper Troposphere, S: Stratosphere, LS: lower Stratosphere)

What IRS would bring the Atmospheric Composition user community?

- √ The situation for MTG-IRS is different
- ✓ There is no End-User requirements regarding the AC products
- ✓ Working with IRS Mission Advisory Group (MAG) members to define what could be done with MTG-IRS, what is possible and what needs to be studied or developed
- ✓ Next slides will show the outcome of the first discussion

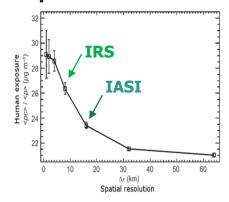

MTG-IRS vs. IASI and IASI-NG


- ✓ Reduced spectral coverage → will miss CH₄, N₂O, SO₂ v₃, HDO
- ✓ Coarser spectral resolution and larger noise → reduced vertical sensitivity + surface sensitivity

- ✓ Continuous coverage → Better mapping opportunities
- √ Higher spatial resolution → improved resolution of sources
- √High temporal sampling → diurnal sampling; rapidly changing chemistry

 IASI PM

 IASI PM



Limitations with polar sounders

 Spatial resolution: separating sources at city scale and improve exposure assessment

Diurnal sampling

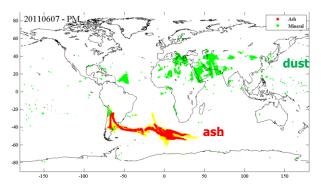
Opportunities for MTG-IRS

Time resolved measurements of CO, O_3 , tropospheric/total columns, NH_3 columns at better spatial resolution over the Europe-Africa disc

but:

- Over polar sounders, IRS will have reduced vertical sensitivity in the troposphere for O₃ and CO
- Varying sensitivity to boundary layer as function of thermal contrast
- Anthropogenic SO_2 is unlikely to be measured (no coverage of v_3 band) spectral range

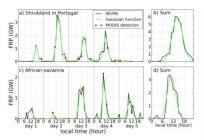
Questions


- Will IRS allow resolving the diurnal cycle of pollution / emission?
- Is the reduced vertical sensitivity compromising AQ applications?
- Will operational assimilation system benefit from the diurnal measurements

Demonstrated with polar sounders

• Uses signature from SO₂, mainly in v_3 band (v_1 seen for large eruptions) or volcanic ash

Fires with CO, NH₃ and VOCs


Opportunities for MTG-IRS

Volcanoes:

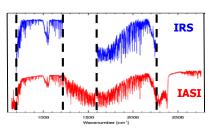
- $SO_2 v_3$ band will not be accessible; alerts based on SO_2 will be possible using signal in v_1 , likely only for large eruptions
- Ash alerts will be possible and benefit from the improved spatial/temporal sampling

Fires:

 CO, NH₃ and VOCs at higher resolution with diurnal sampling

Questions

- Will IRS contribute to identifying/monitoring extreme events?
- Are there new operational applications to develop?
- Technical: Will these applications not be impacted by the use of PCs


Conclusion

EUMETSAT is preparing <u>very complementary</u> hyperspectral IR missions:

IASI-NG

is a continuation of the IASI mission: Michelson interferometer + Mertz compensation:

- ✓ Polar orbit at 817 km
- ✓ Better spectral sampling of 0.125 cm⁻¹ and resolution of 0.25 cm⁻¹ → Twice better than IASI
- ✓ Detector: 12 km resolution at nadir
- ✓ Spectral coverage: 645 2760 cm⁻¹
- √ Half of the IASI radiometric noise

is an imaging FTS, based on a Michelson interferometer + on-board field compensation:

- ✓ Geostationary orbit
- ✓ Spectral sampling of ~0.6 cm⁻¹ and resolution of ~0.754 cm⁻¹
- ✓ Detector: 4 km resolution at nadir
- Two spectral bands: 700-1210 and 1600-2175 cm⁻¹ within IASI spectra

High spectral resolution and sampling
+
High radiometric accuracy

High spatial resolution and sampling
+
High temporal repetition

Current other hyperspectral sounders used at **EUMETSAT**

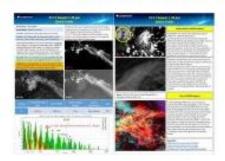
in GEO orbit)

LTAN=13:30

Cross-track

Infrared

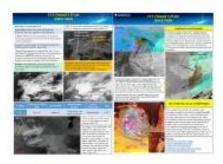
Thanks for your attention!



Spare slides

Guidance on FCI channels

Quick Guide - 1.37 µm Channel


Download Quick Guide

RGB Quick Guide - Cloud Phase

Download Quick Guide

Quick Guide - 2.25 µm Channel

Download Quick Guide

RGB Quick Guide - True Colour

Download Quick Guide

RGB Quick Guide - Cloud Type

Download Quick Guide

RGB Quick Guide - Fire Temperature

Download Quick Guide

http://eumetrain.org/rgb_quick_guides/index.html

Global tropos.

Climate

Opportunities for MTG-IRS

The relevant species $(O_3, CO, HNO_3, VOCs)$ for monitoring the global troposphere and stratosphere will be accessible with IRS. However,

- ✓ With less vertical sensitivity
- ✓ On temporal/spatial scales that are smaller than the processes currently looked at (most applications use averages, in time and space)

Among the main long-lived greenhouse gases, only CO_2 will be measurable (not CH_4 and N_2O). Several short-lived or indirect climate forcers will be accessible but —as above- with less vertical sensitivity and accuracy.

IASI/IASI-NG and MTG-IRS are very complementary

