Some Meteorological Impacts of Cycle 47r2 (versus 47r1)

Tim Hewson

Principal Scientist, Forecast Performance Monitoring and Products

tim.hewson@ecmwf.int

Thanks to Ivan Tsonevsky, Fernando Prates, Richard Forbes, Mark Rodwell

© ECMWF June 3, 2021

Outline

- Cycle 47r2 was introduced operationally on 11 May 2021
- Note that the only substantive performance-related change was to the Ensemble:
 - 137 levels now, 91 before
- Here we provided an overview of some !meteorological impacts" (i.e. referencing products, weather)
- Follows on from Richard Forbes' talk on Tue morning
- So what weather/product aspects could level number increase have changed, in some systematic way ?
- Quite a lot!
- Recall that the scorecard, comparing with the previous cycle (47r1), was positive...

Meteorological Aspects covered here:

- CAPE
- Lightning forecasts
- Precipitation total distributions
- Tropical cyclone frequencies
- Inversions
- Low cloud

(other aspects could well have changed also)

CAPE and CAPE-shear – changes in the Model Climate

Example of ENS Lightning density forecast (6h average of strikes per h per 100km²) – 47r1

Example of ENS Lightning density forecast (6h average of strikes per h per 100km²) – 47r2 (same case)

Increases relate to higher CAPE values

90th percentile 24h precipitation

99th percentile 24h precipitation

99th percentile 24h precipitation

90th percentile 24h precipitation

General Comments on ENS precipitation behaviour

• CONTROL forecast shows higher occurrence of extreme precipitation in 47r2 than in 47r1, suggesting **it is therefore sensitive to vertical resolution**

• CONTROL forecast in 47r2 is in closer agreement with HRES, when allowing for different resolutions (as might be expected as they now have the same vertical resolution)

• ENS perturbed forecasts have higher occurrence of extreme precipitation than the unperturbed CONTROL, and both are increased in 47r2

Biggest differences are in the Tropics

Tropical Cyclone Strike Probs (D5-6) – 47r1 example

Tropical Cyclone Strike Probs (D5-6) – equivalent 47r2 example

Number of Tropical Depressions in the fcst (up to +360h) per cycle

Tropical Cyclones

- More Tropical Cyclones "identified" in 47r2
- Main increase in numbers is for the weaker features (tropical depressions)
- TC numbers have increased slightly more for the PERTURBED forecasts than for the CONTROL
- There is high sensitivity to the cut-off thresholds used to define a disturbance as a TC

Sharper inversions, generally, in new cycle

Site shown is at 20S 90W, 60h lead

Some benefits, notably near inversion level..

• But will problematic low cloud cases be better represented in the new ENS ?

Low Cloud Cover

137 levels (as in 47r2)

91 levels (as in 47r1)

Systematic error in this synoptic set up – insufficient low cloud inside red ellipse (+other areas) No evidence (from detailed investigation of this case) of any positive benefit of having more levels

Summary

• Purely as a result of an increase in the number of vertical levels in cycle 47r2, certain distributional characteristics of the ENS have changed:

- More CAPE (over land)
- More lightning
- More heavy rainfall
- More TCs
- Sharper inversions
- This list is by no means exhaustive

• Sharper inversions are probably better (though problematic low cloud cases may not have improved), but for the other parameters it is not completely clear whether these changes are improvements

- However, the ENS should now be more consistent with HRES
- We don't have complete explanations for all these changes

 Recall also that standard surface weather and upper level skill scores for the ENS are notably better for 47r2 than for 47r1

			n.hem			s.hem			tropics			europe			
			rmsef	crps	spread	rmsef	crps	spread	rmsef	crps	spread	rmsef	crps	spread	
an z		50													
		100													
		250													
		500													
		850													
<u>t</u>		50													
		100													
		250													
		500													
ff L ms 2t		850													
		50													
		100													
		250													
		950													ENS Scorecard
		250													
		200													
		700													
															4/r2 vs 4/r1
10	f														
10	f@sea														
swi	1]			
mw	P											1			Blue and Purple
ob z		50													
		100													mean 47r2
		250													
		500													le hottor
		850													13 Dellei
<u>t</u> ff		50													
		100													
		250													
		500													
		850													
		50													
		100													
		250													
		500													
<u>г</u> 10f		850													
		250													
	r	700													
24															
tee															
to															

