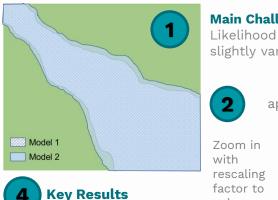
Leveraging EO Data Assimilation for Improved Flood Inundation Forecasts

Antara Dasgupta, Renaud Hostache, RAAJ Ramsankaran, Stefania Grimaldi, Guy Schumann, Valentijn Pauwels, and Jeffrey Walker

A New Method to Combine Flood Maps with Models



NSW.

Event

LEAD TIME IN DAYS

■Image I = Image II = Image I and II

Based on: Dasgupta et al., 2021. A

mutual information-based likelihood function for particle filter flood extent assimilation. (WRR)

Main Challenge

Likelihood sensitivity towards slightly varying extents

Proposed Solution

An information theoretic approach to model likelihoods in SIS particle filter

Mutual Information (MI) Observation Ensemble pdf f_{so}() (marginal) enhance sensitivity **Test Case** Clarence MI=0 iff Catchment. the joint Divergeno (KLD) between equal to Australia. product of 2011 Flood marginals

Finding the Best Flood Observations to Correct Flood

Flat gentle

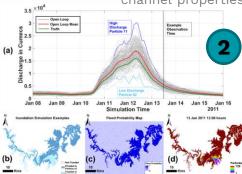
backwater

valley, dominant

Partial coverage for large catchments using high-res satellites

Proposed Solution

Targeted observation design based on channel properties



Narrow steep

valley, no

Image II

Image I

Kev Results

Flat gentle

valley, little

backwater

Brier Skill Scores (BSS) for single image assimilation, points on each curve represent satellite observations and the corresponding BSS from the acquisition time to the end of the forecast.

Dasgupta et al., 2021, On the impacts observation location. timing and frequency on flood extent assimilation performance.

Based on:

BSS (errors in assimilated forecast vs. open loop) = 1 means 100% improvement!!!