

Reducing systematic forecast errors by coupling uncertain model parameters to data assimilation

Günther Zängl

on behalf of the DWD ICON development team

WGNE Systematic Error Workshop
02/11/2022

Overview

- → Motivation
- Methodology
- → Results
- Summary and concluding remarks

Motivation

- → Near-surface model biases are strongly affected by uncertain physical properties of vegetation and soil (e.g. stomata resistance, heat conductivity) as well as model tuning parameters
- → Physical properties are usually derived from external parameter data (land-cover and soil-type classification, ...), which may not cover the full heterogeneity that exists in nature
- → This typically leads to ambivalent results when trying to tune parameters (better in some regions, worse in others)
- → At DWD, we developed a methodology to use information from data assimilation (DA) to adaptively optimize uncertain parameters (internally referred to as model-DA coupling)

Special acknowledgements to Harald Anlauf and Christine Sgoff for related work in data assimilation

Methodology

- → Forecast variables targeted for adaptive optimization: T2M, RH2M, FF10M
- → Time-filtered data assimilation increments for temperature, humidity and wind speed at the lowest model level are used as proxies for the model bias / predictors for adaptive optimization (filtering time scale 2.5 days)
- → This obviously requires assimilation of T2M, RH2M and FF10M data

Remarks

- → The adaptive optimization of T2M was put into operations together with the assimilation of T2M (previous attempts of T2M assimilation were not successful)
- → In regions where FF10M observations are blacklisted for assimilation, the adaptive tuning of surface friction needs to be turned off as well

Methodology

Model parameters selected for adaptive optimization

- → T2M/RH2M: stomata resistance of plants, minimum evaporation resistance of bare soil, LAI and root depth (transitional seasons only)
- → T2M diurnal amplitude: soil heat capacity, heat conductivities of soil and skin layer, (under testing) near-surface profiles of minimum vertical diffusion coefficient
- → T2M in the presence of snow cover: snow albedo
- → FF10M: vegetation roughness length, SSO blocking tendency at lowest model level

Implementation details

exemplarily for diurnal amplitude of T2M

weighted analysis increment:
$$T_{wif} = T_{wif} + \frac{dt_{ana}}{dt_{filt}} \left(T_i \cos \left(\frac{2\pi}{86400} t_{loc} \right) - T_{wif} \right)$$
,

with $dt_{filt} = 2.5$ days as for T_{if} and RH_{if} , T_i being the assimilation increment at the lowest model level and t_{loc} being local time.

Based upon T_{wif} , multiplicative factors for skin conductivity, soil heat conductivity and soil heat capacity are defined, all having the same functional structure:

$$f_x = 1/(1 - f_s f_{ai} T_{wif})$$

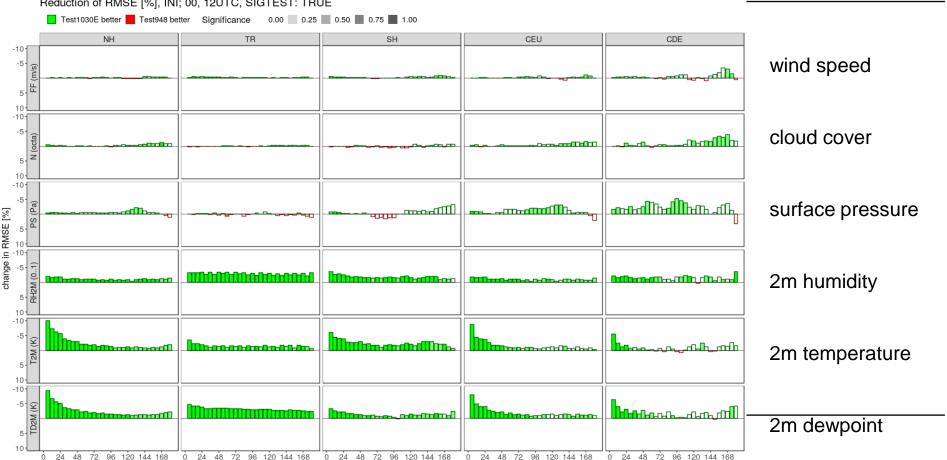
for positive T_{wif} and

$$f_x = 1 + f_s f_{ai} T_{wif}$$

for negative T_{wif} . Here, the scaling factor f_{ai} is taken to be

$$f_{ai} = (10800/dt_{ana})^{(2/3)}$$

Results


- → T2M assimilation and the related elements of model-DA coupling were operationalized in May 2022
- → Adaptive surface friction will follow in late November 2022 in combination with new (higher resolution) raw data for orography and a resolution upgrade (40 → 26 km for EPS, 90 → 120 levels for DET and EPS)
- → To demonstrate the isolated effect of model-DA coupling on forecast skill, an experiment for autumn 2020 was repeated without coupling
- → In addition, results for the preparatory (parallel routine) phases for the above-mentioned upgrade steps will be shown

Scorecard for SYNOP verification, T2M assimilation and related coupling

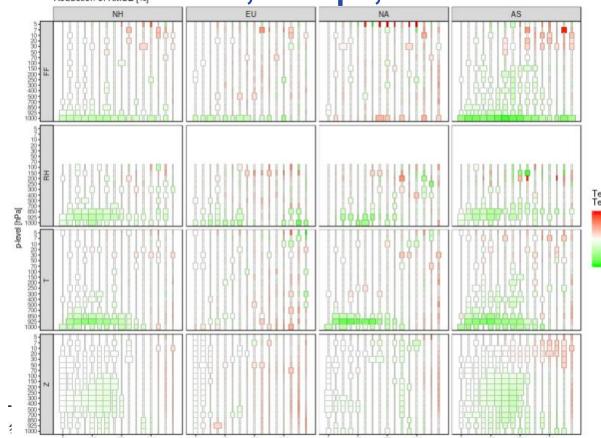
Deutscher Wetterdienst
Wetter und Klima aus einer Hand

Forecasts initialized from 2020/10/20 to 2020/12/31 Reduction of RMSE [%], INI; 00, 12UTC, SIGTEST: TRUE

Scorecard for SYNOP verification, adaptive surface friction and orography+resolution upgrade

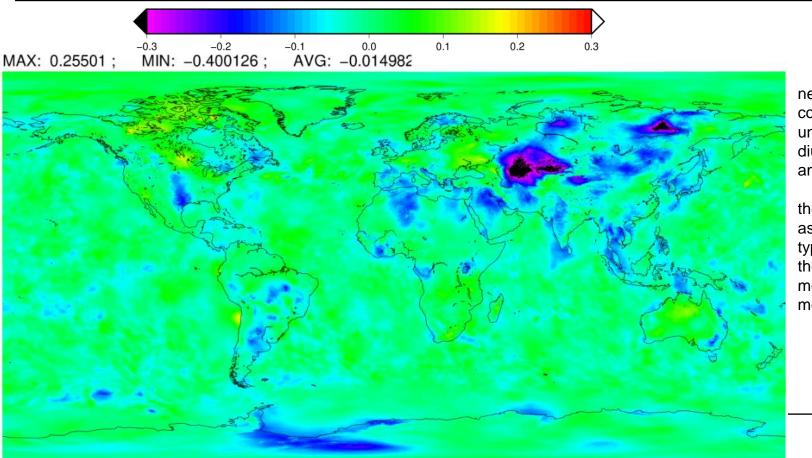
lead-time [h]

Scorecard for SYNOP verification, benefit from full model-DA coupling when starting from same analyses


Deutscher Wetterdienst
Wetter und Klima aus einer Hand

model-DA coupling when starting from same analyses
Forecasts initialized from 2020/10/20 to 2020/11/13
Reduction of RMSE [%], INI; 00, 12UTC, SIGTEST: TRUE

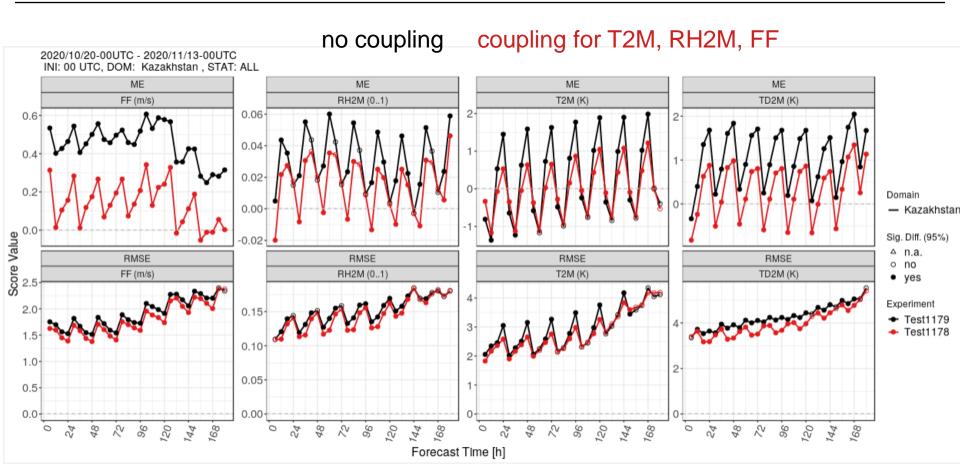
Radiosonde verification, Verification period: 2020/10/20 - 2020/11/13 INI: 00, 12UTC, SIGN. TEST: TRUE Data selection by Initial-date Pactivition of RMSE [9/1] NH, Europe, North America, Asia



filled boxes: significant at 95% level

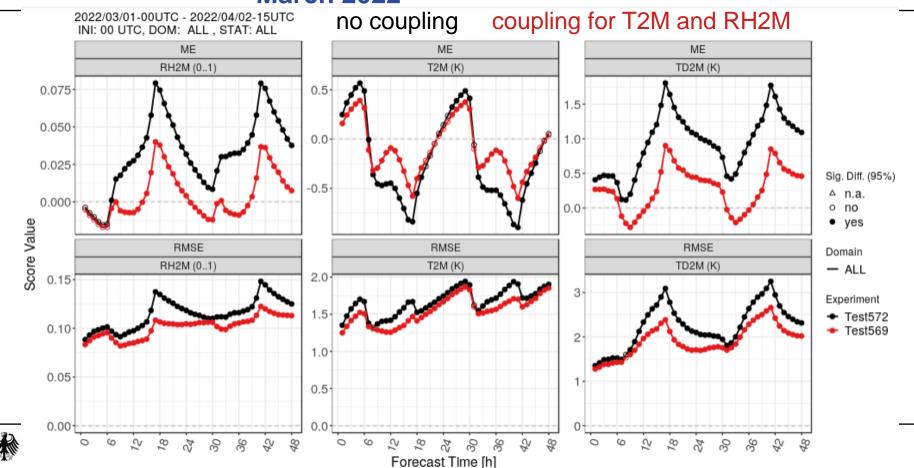
The score improvements in the lower troposphere give confidence that the model-DA coupling corrects true biases, not representativity errors of surface stations

For illustration: time-filtered COS-weighted assimilation increment for temperature

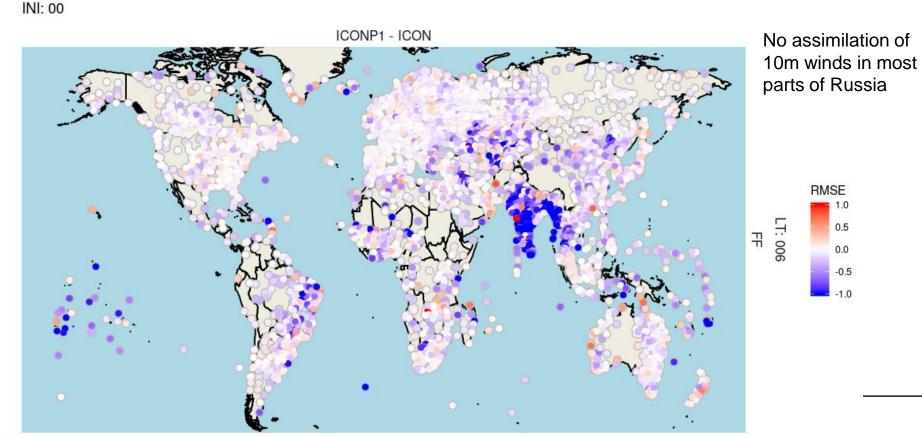

snapshot for October 31, 2020

negative values correspond to an underestimated diurnal temperature amplitude;

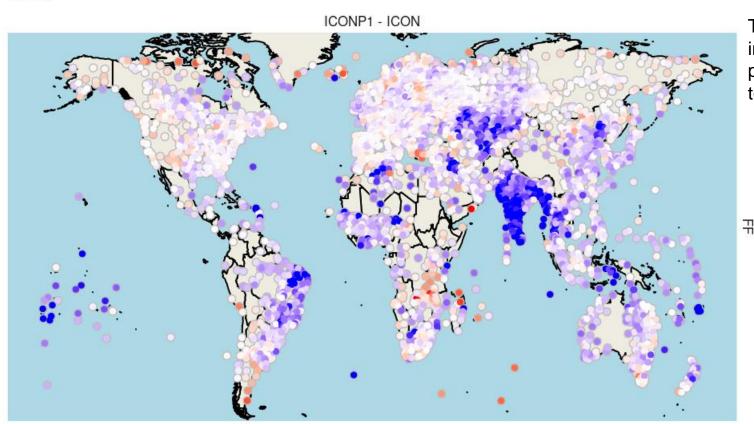
the filtered 3-hourly assimilation increment typically has about 1/4 the amplitude of the model bias (with model-DA coupling)

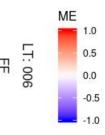

Corresponding Bias/RMSE, Central Asia

ICON-D2 (LAM configuration for central Europe), March 2022

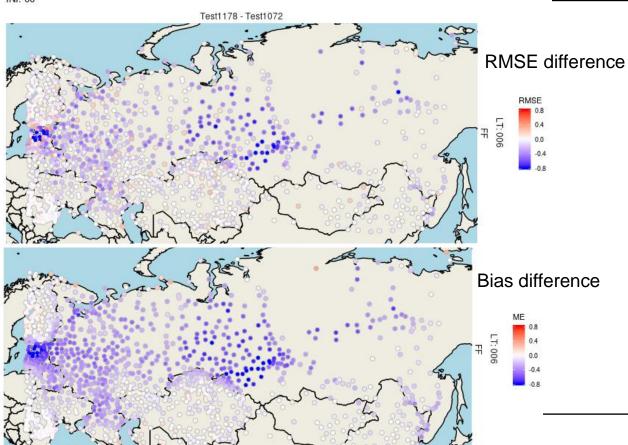


Station-based RMSE difference for FF10M due to adaptive surface friction + new orography data


2022.08.01-00UTC - 2022.08.31-18UTC


Related bias difference

2022.08.01-00UTC - 2022.08.31-18UTC INI: 00


The score improvements are predominantly related to bias reduction

What happens when activating the 10m wind

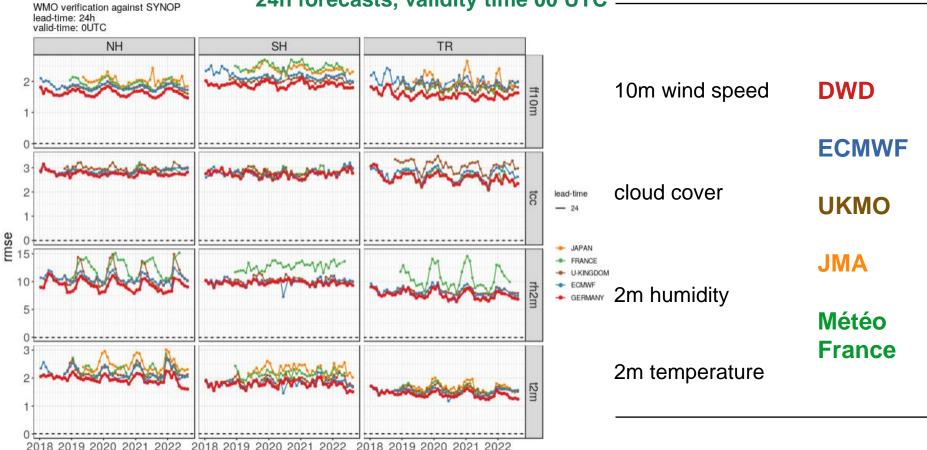
Deutscher Wetterdienst
Wetter und Klima aus einer Hand

2020.10.20-00UTC - 2020.11.28-00UTC

Our 10m wind speeds currently have a large positive bias over parts of Russia, the origin of which is not entirely clear

10m wind data over Russia and some adjacent countries are reported only in full m/s, which raises questions about their quality

Assimilating them used to degrade the surface pressure analyses over Europe without DA coupling


Work in progress...

WMO (WGNE) intercomparison for SYNOP scores

Date

24h forecasts, validity time 00 UTC

Summary

- → The model-DA coupling approach developed for DWD's ICON modeling system allows reducing systematic forecast errors related to poorly known external parameter data / physical properties derived therefrom
- → To some extent, it may also correct deficiencies in the physical process description; this is hard to separate in practice, but our experience gained so far is that improvements at process level are not hidden by the model-DA coupling (they still lead to better forecast quality)
- → For 2m temperature, 2m humidity and 10m wind speed, RMSE reductions of about 5% are achieved
- → To a weaker extent, the improvements also show up in the lowertropospheric levels of the radiosonde verification

Concluding remarks

- Our methodology differs from common ML algorithms by not relying upon training data
- → It adapts to changes in physics parameterizations within a couple of days
- → In case of fundamental changes (e.g. new schemes), adapting the coupling variables might be necessary
- → Using time-filtered assimilation increments is the most convenient way for us because we use an incremental assimilation scheme anyway, but alternatives involving offline analyses of T2M etc. would be possible
- → As most of the biases are annually recurring, developing a related ML approach for climate applications could be possible

