

Addressing the calibration bottleneck using machine learning: Application to the CNRM-CM6-1 model

Romain Roehrig

CNRM, Météo-France and CNRS, Toulouse, France

Climate model calibration

Climate model = a software

- + external forcings
- + a horizontal/vertical grid
- + a scientific content (e.g., parameterizations)
- + values for model internal/uncertain parameters >> calibration

Calibration (or tuning)

- Common to most modelling frameworks
- Can be seen as an optimisation procedure under constraints (or *metrics*), possibly with priorities/weights.
- Need for high-quality references/observations
- +1 W m⁻² at TOA \sim +0.5–1.5 K of global mean near-surface temperature (*Hourdin et al. 2017*).
 - Given current uncertainties, present-day global-mean temperature in a climate model is mostly a result of tuning.

A bottleneck for climate model development

- *High dimensionality* of the parameter space ~O(10)
- Climate model numerical simulations are computationally expensive
 - > An exhaustive exploration of the parameter space is not directly possible.
- Large number and variety of metrics O(10-100)
- Overfitting issue, treatment of uncertainties

Calibration of CNRM-CM6-1 (Voldoire et al. 2019, Roehrig et al. 2020)

- Manual calibration, 1 or 2 parameters at the same time, mixing well-defined metrics and more subjective considerations
- Calibration of stand-alone components before coupling, priorities among metrics
- Often questioning the model physical content. But difficult to disentangle true model structural limits from "just" a poor calibration?

A rationale for addressing the calibration bottleneck

History matching

- Determine the plausible sets of model parameter values rather than optimize
- Or equivalently rule out the *implausible* sets of model parameter values
- For a given set of *quantitative metrics*
- Considering reference/observations uncertainties
- And introducing priors for *model structural errors* (interpreted at first as a tolerances to error)

Machine learning

- *Emulate* the model behaviour (i.e. the dependence of metrics to model parameters), to explore at very weak cost the parameter space.
- Consider also the emulators' uncertainty
- Gaussian processes nicely provide predictions with an uncertainty estimate

Iterative refocussing

- Be as *parsimonious* as possible in terms of true simulations
- Start with a 'few' number of simulations and progressively add new ones to improve the emulator quality, but only where it is needed
- Possibly add new metrics along the way, based on more expansive simulations (pre-conditioning with cheaper configurations)
- > A formalized calibration procedure, transparent and reproducible.
- More rigorous comparison between parameterizations, quantifying more rapidly the true benefit of a new development.
- > Possibly not a single acceptable configuration but several: being able to explore the model parametric uncertainty of its emergent properties.

The technical framework

- 1. Define targeted (scalar) metrics f, their reference values r_f and associated uncertainties $\sigma_{r,f}$
- 2. Identify the relevant model *parameters* λ , and their "acceptable" range >> *input parameter space* Λ
- 3. Define a simulation strategy, build an experimental design, run simulations >> learning dataset
- 4. **Emulate** $f(\lambda)$ for each metric (Gaussian Processes)
- 5. Identify the sub-space of Λ which is compatible with references for all metrics

- The reference uncertainty
- The emulator uncertainty
- The model structural error (tolerance to error) $\sigma_{d,f}$

$$>>$$
 Implausibility measure I_f , *cutoff* T

$$I_f(\boldsymbol{\lambda}) = rac{|r_f - \operatorname{E}[f(\boldsymbol{\lambda})]|}{\sqrt{\sigma_{r,f}^2 + \sigma_{d,f}^2 + \operatorname{Var}[f(\boldsymbol{\lambda})]}}.$$

$$NROY_f^1 = \{ \lambda \mid I_f(\lambda) < T \}$$

$$NROY^1 = \bigcap_f NROY_f^1 = \{\lambda \mid I_f(\lambda) < T, \text{ for all } f\}$$

The technical framework

- 1. Define targeted (scalar) metrics f, their reference values r_f and associated uncertainties $\sigma_{r,f}$
- 2. Identify the relevant model *parameters* λ , and their "acceptable" range >> *input parameter space* Λ
- 3. Define a simulation strategy, build an experimental design, run simulations >> learning dataset
- 4. *Emulate* $f(\lambda)$ for each metric (Gaussian Processes)
- 5. Identify the sub-space of Λ which is compatible with references for all metrics

- The reference uncertainty
- The emulator uncertainty
- The model structural error (tolerance to error) $\sigma_{d,f}$
 - >> *Implausibility* measure I_f , *cutoff* T

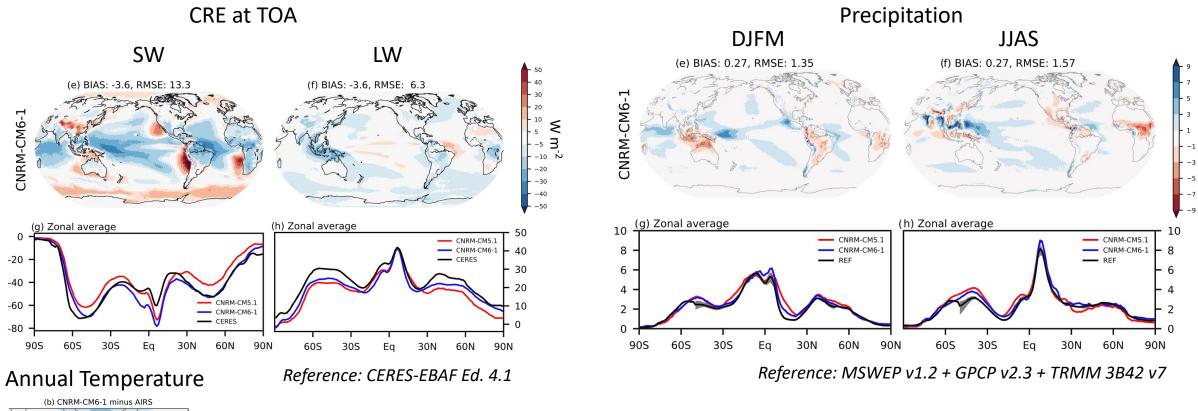
$$I_f(\boldsymbol{\lambda}) = rac{|r_f - \operatorname{E}[f(\boldsymbol{\lambda})]|}{\sqrt{\sigma_{r,f}^2 + \sigma_{d,f}^2 + \operatorname{Var}[f(\boldsymbol{\lambda})]}}.$$

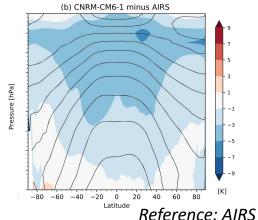
$$NROY_f^1 = \{ \lambda \mid I_f(\lambda) < T \}$$

$$NROY^1 = \bigcap_f NROY_f^1 = \{\lambda \mid I_f(\lambda) < T, \text{ for all } f\}$$

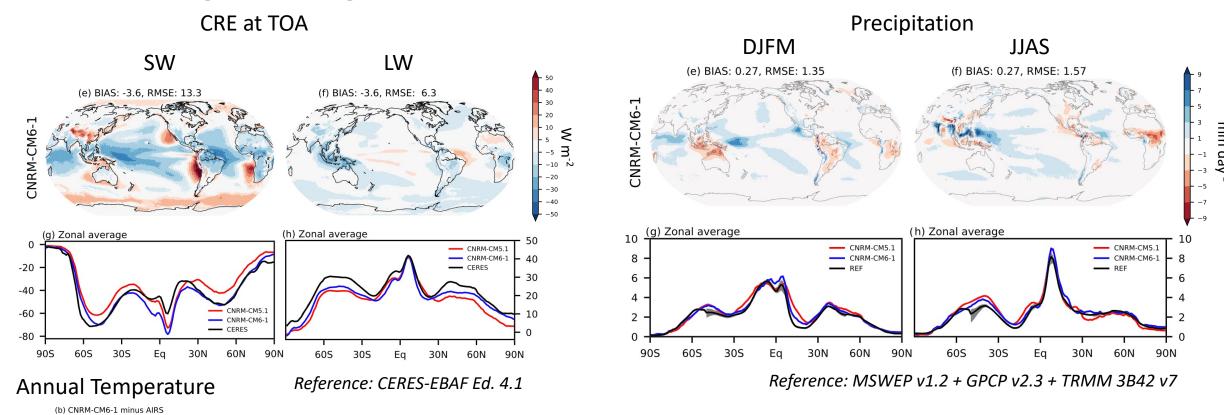
6. Iterate over several waves to reduce the emulators' uncertainty in NROY^{N-1}, until convergence

The starting configuration: CNRM-CM6-1





The starting configuration: CNRM-CM6-1

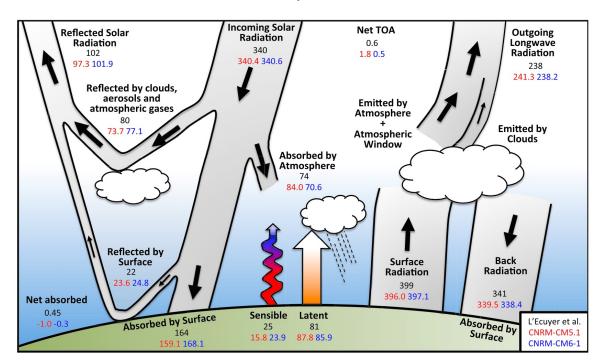


Reference: AIRS

> Can we reduce CNRM-CM6-1 biases through better calibration?

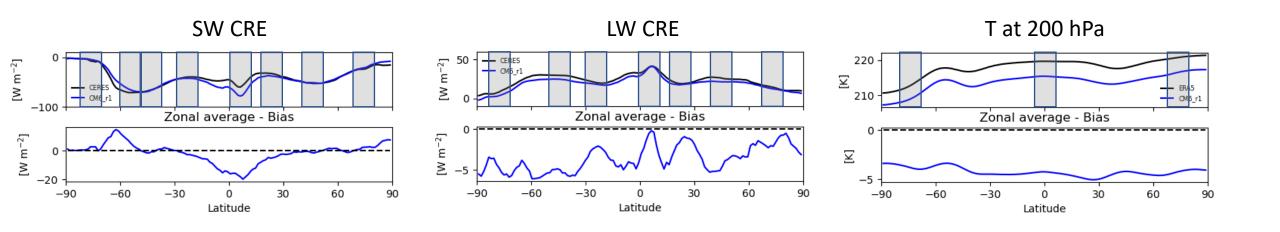
Following the CNRM-CM6-1 tuning strategy, 3 classes of metrics:

- 1. Global averages of the energy budget components
 - at TOA: OLR, OSR, Net, SW/LW CRE
 - at the surface ocean: Net, SWdn, LWdn
 - Values from CERES-EBAF, uncertainties based on the literature
 - Except Net at surface/TOA = $0 + /- 0.1 \text{ W m}^{-2}$: the model has to be equilibrated.
 - Tolerance to error: 0.5 W m⁻²



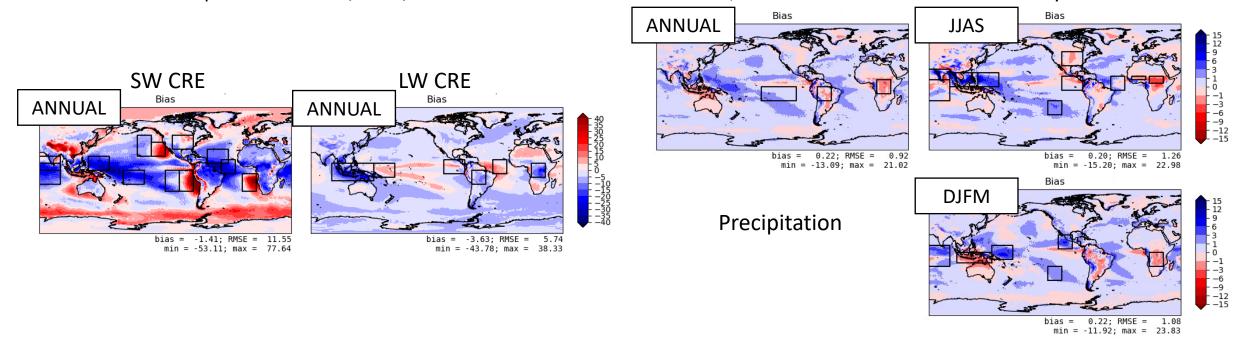
Following the CNRM-CM6-1 tuning strategy, 3 classes of metrics:

- 1. Global averages of the energy budget components
- 2. **Zonally average profiles** of SW/LW CRE + Temperature at 200 hPa
 - SW/LW CRE: CERES-EBAF with uncertainty of 2 W m⁻² + tolerance of 1 W m⁻²
 - T200: based on ERA5/JRA55/MERRA/CFSR ensemble mean and std, tolerance 1.5 K



Following the CNRM-CM6-1 tuning strategy, 3 classes of metrics:

- 1. Global averages of the energy budget components
- 2. Zonally average profiles of SW/LW CRE + Temperature at 200 hPa
- 3. **Regional and seasonal averages** of SW/LW CRE and precipitation
 - SW/LW CRE: CERES-EBAF, uncertainty of 2 W m⁻², tolerance of 5 W m⁻²
 - Precipitation: MSWEP/GPCP/TRMM 3B42 ensemble mean and std, tolerance between 0.5 and 1 mm day⁻¹



Following the CNRM-CM6-1 tuning strategy, 3 classes of metrics:

- 1. Global averages of the energy budget components
- 2. Zonally average profiles of SW/LW CRE + Temperature at 200 hPa
- 3. Regional and seasonal averages of SW/LW CRE and precipitation

> 63 (scalar) metrics

Model parameters and simulation strategy

46 model parameters

- 7 from turbulence (TKE scheme + PBL-top entrainment)
- 16 from microphysics (1-moment, 5 hydrometeors)
- 19 from the unified dry, shallow and deep convection scheme
- 4 from cloud radiative properties (heterogeneity)

Model parameters and simulation strategy

46 model parameters

- 7 from turbulence (TKE scheme + PBL-top entrainment)
- 16 from microphysics (1-moment, 5 hydrometeors)
- 19 from the unified dry, shallow and deep convection scheme
- 4 from cloud radiative properties (heterogeneity)

Waves of 400 simulations

- 1-year *sstclim* simulations + 3-month spin-up
- sstclim vs amip correction of the reference target
- Consideration of *internal variability uncertainty* based on a 100-year sstclim simulation with CNRM-CM6-1.
- Latin Hypercube sampling for 1st wave

Global Outgoing SW radiation at TOA CM6 amip 101.8 101.7 CM6 sstclim 101.4 JJAS precipitation over Central Sahel 4.0

2000

2020

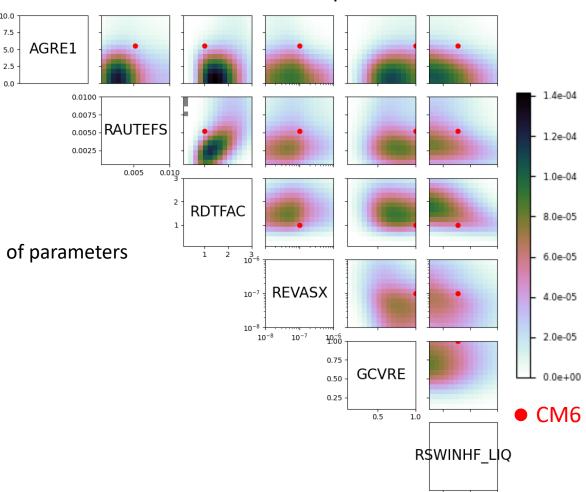
Wave 1 results

- NROY¹ space: 0.66% of the input space
- *Numerical characterization* of the NROY space:
 - (very) large sampling (LHS) of the input parameter space
 - Use emulators to compute associated implausibilities
 - Compute densities of points within NROY space as a function of parameters
 - 1D or 2D representations

Wave 1 results

- NROY¹ space: 0.66% of the input space
- *Numerical characterization* of the NROY space:
 - (very) large sampling (LHS) of the input parameter space
 - Use emulators to compute associated implausibilities
 - Compute densities of points within NROY space as a function of parameters
 - 1D or 2D representations

NROY¹ density within input parameter space For some of the dominant parameters

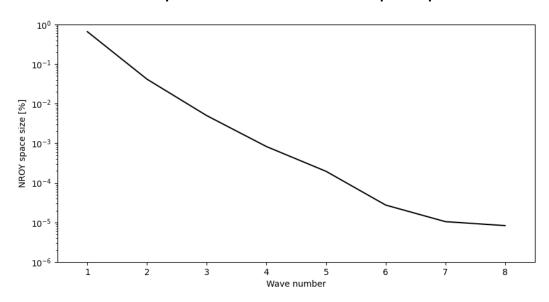


0.8

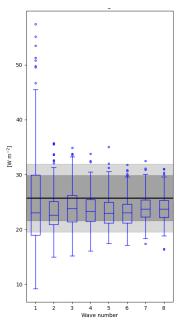
From Wave 1 to Wave 8

- Strong reduction of the NROY space size (8 orders of magnitude)
- Some metrics have converged, some are more demanding

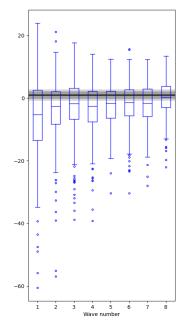
NROY space fraction of the input space



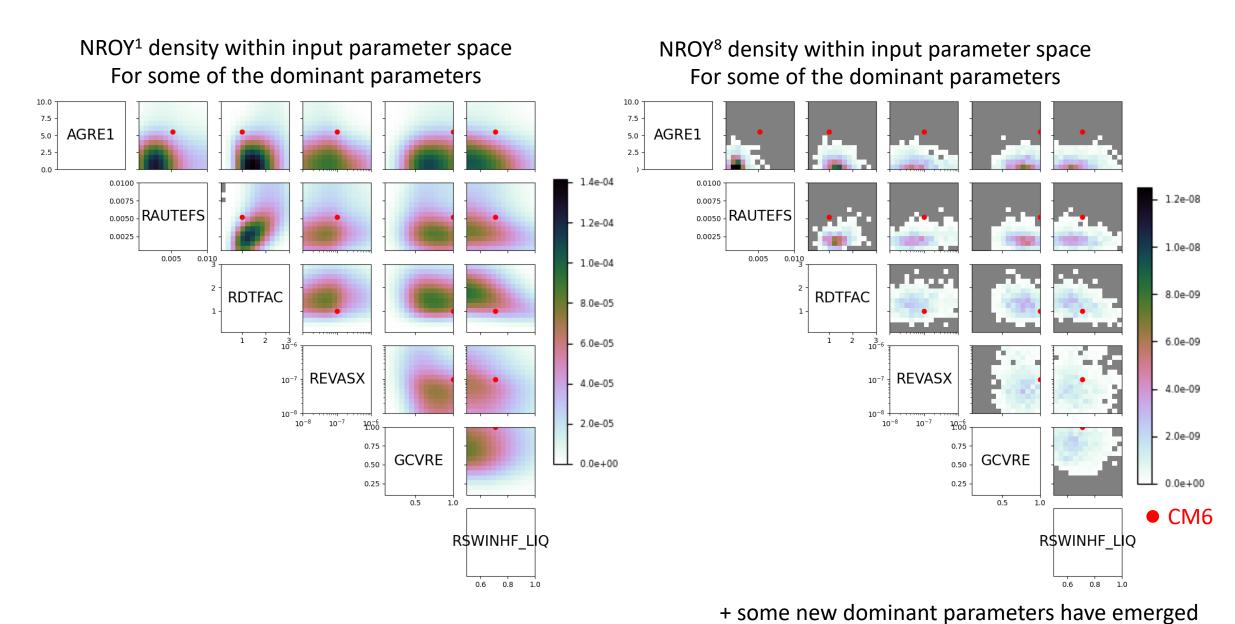
Global LW CRE at TOA



Ocean net energy flux



From Wave 1 to Wave 8



Choosing configurations of interest

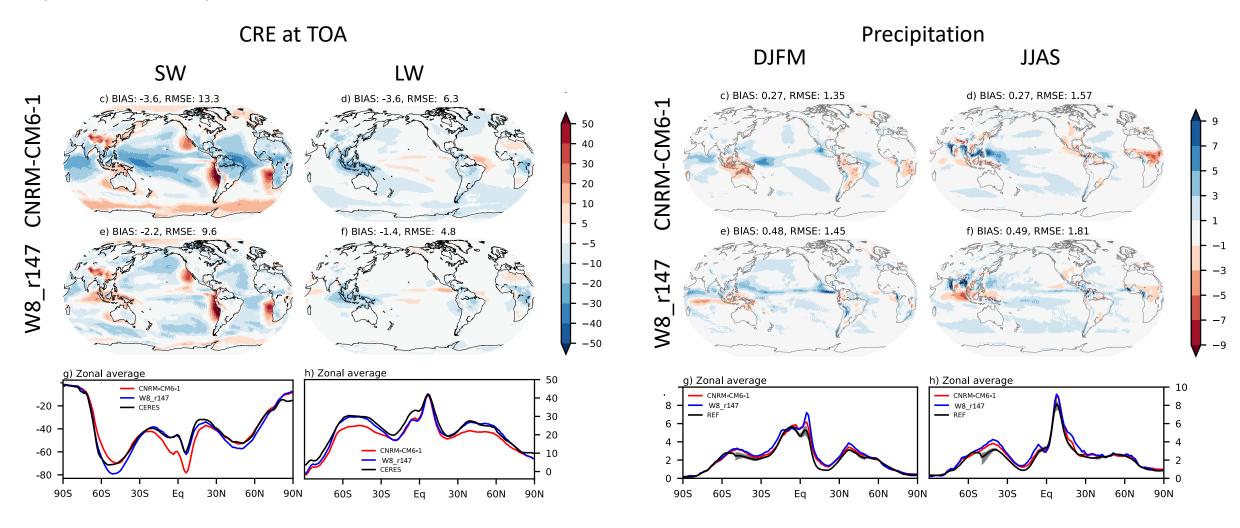
Unfortunately, none of Wave 1-8 simulations fulfils all the metrics

- Convergence is not yet achieved
- Appropriate sampling of small NROY spaces is difficult and requires further work
- Some tolerances to error are likely too weak and require to be revisited.

Nevertheless

- A few simulations fulfil all the metrics but one (for a cutoff of 3)
- A few have interestingly low RMSEs for targeted variables
- > A selection of these simulations is further analysed with amip-style simulations (10 years).

Improved performance?



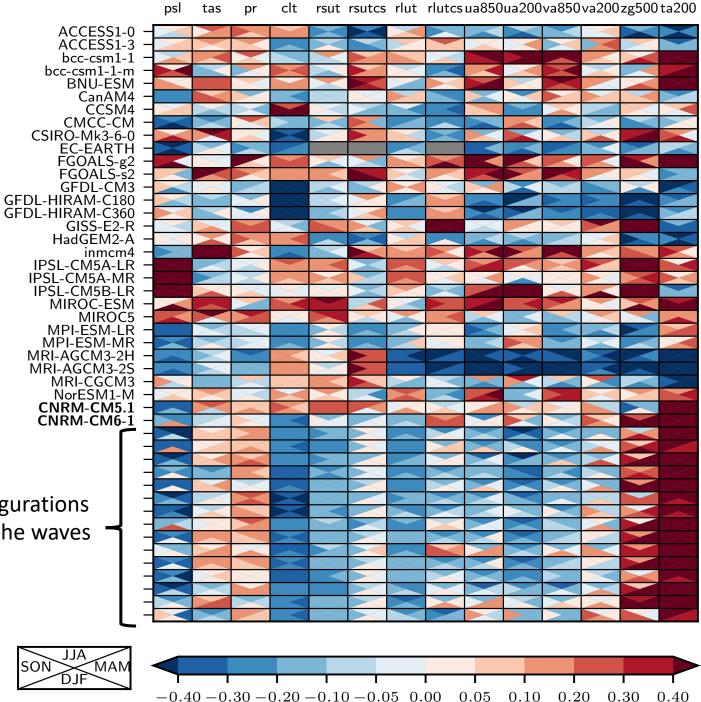
- *Improved or similar performance* on several mean state features
- Some errors seems truly structural: clouds/radiation over eastern part of ocean basins

Improved performance?

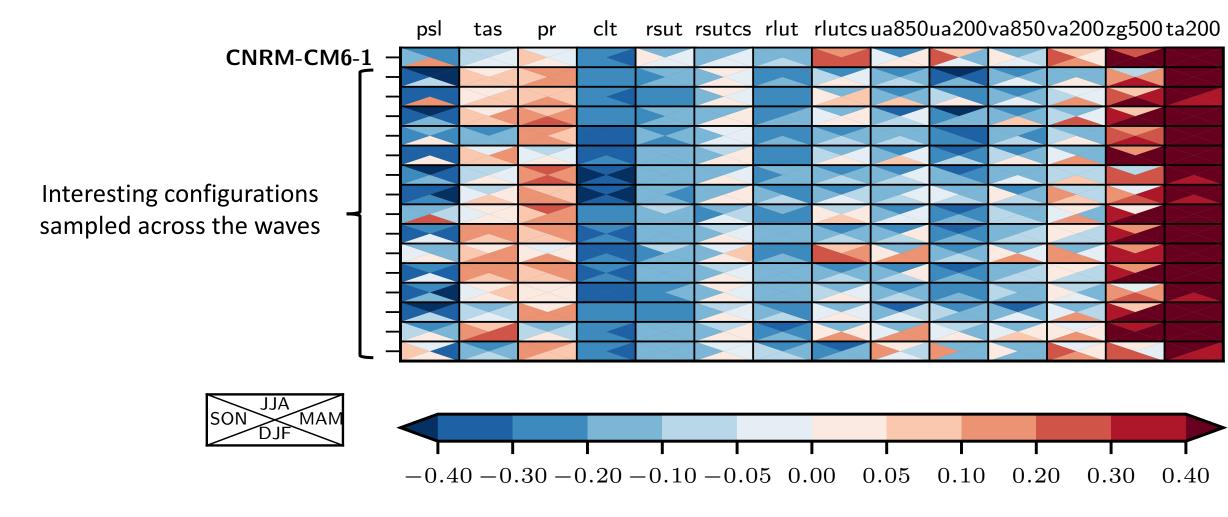
Relative score within the CMIP5 ensemble (Gleckler et al. 2016)

$$score = \frac{RMSE - RMSE_{median}}{RMSE_{median}}$$

Interesting configurations sampled across the waves



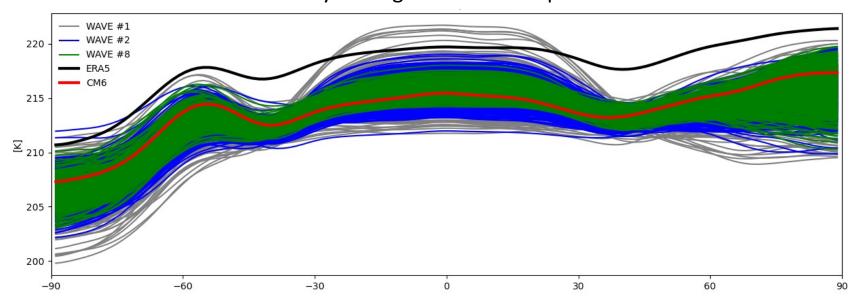
Improved performance?



- *Improved or similar performance* on several mean state features
- Some errors seems truly structural: clouds/radiation over eastern part of ocean basins, upper-tropospheric temperature
- Some trade-offs are required

Upper-tropospheric temperature bias: structural limit?

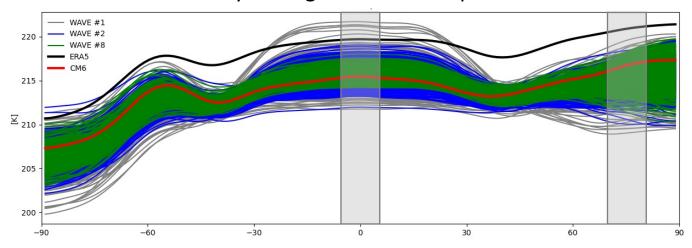
Zonally-average 200-hPa Temperature



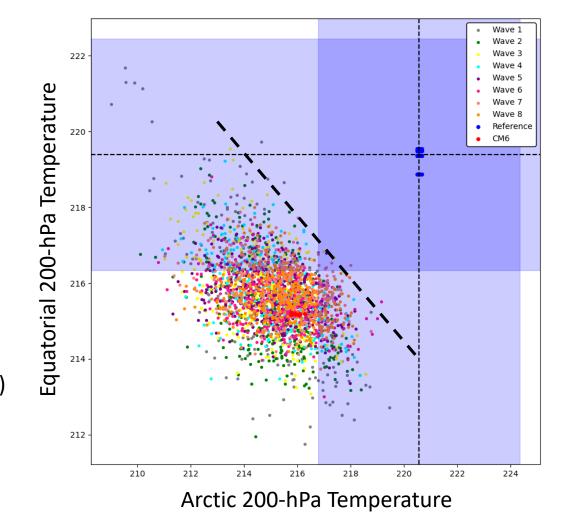
- Simulations performing well (beyond the chosen tolerance to error) in the equatorial regions disappear with successive waves
 - Incompatible with other metrics

Upper-tropospheric temperature bias: structural limit?

Zonally-average 200-hPa Temperature



- Simulations performing well (beyond the chosen tolerance to error)
 in the equatorial regions disappear with successive waves
 - Incompatible with other metrics
- The model can most likely not capture both equatorial and arctic upper-tropospheric temperatures within uncertainty ranges, while remaining compatible with other metrics.



Conclusions and next steps

History matching with iterative refocussing

- Provides a relevant and efficient framework for model calibration in the presence of uncertainties
- Can help accelerate model development by comparing calibrated model version
 - ➤ Assessing the true added value of a new development
- Can help better *identify model structural errors*, and thereby help focus bias understanding/model development

Next steps

- Play with tolerances to error to better identify/quantify model structural errors and trade-offs to be made
- Add new metrics (e.g., variability)
- Pre-conditioning with cheaper model configurations e.g., 1D/LES for preserving process-level performance (Couvreux et al. 2020, Hourdin et al. 2020).
- Towards calibration of ocean-atmosphere coupled configurations: accelerating spin-up, use of intermediate resolutions, fast/slow processes...
- Develop physical interpretations of what is happening in the calibration process?

More on the technical/statistical aspects

- Going beyond scalar metrics, emulate directly vectors/maps (using EOFs, Salter et al. 2019)
- Develop strategies to better sample particularly small NROY spaces.