

ECMWF Evaluation of Tropical Cyclone Activity in CMCC SPS **Seasonal Forecast**

Zhiqi Yang*, Enrico Scoccimarro, Marianna Benassi, Andrea Borrelli, Antonella Sanna, Stefano Tibaldi, Antonio Navarra, and Silvio Gualdi

Fondazione Centro euro-Mediterraneo sui Cambiamenti Climatici – CMCC, Italy

Email: zhiqi.yang@cmcc.it

0.65 - 0.70

distance of 400 km

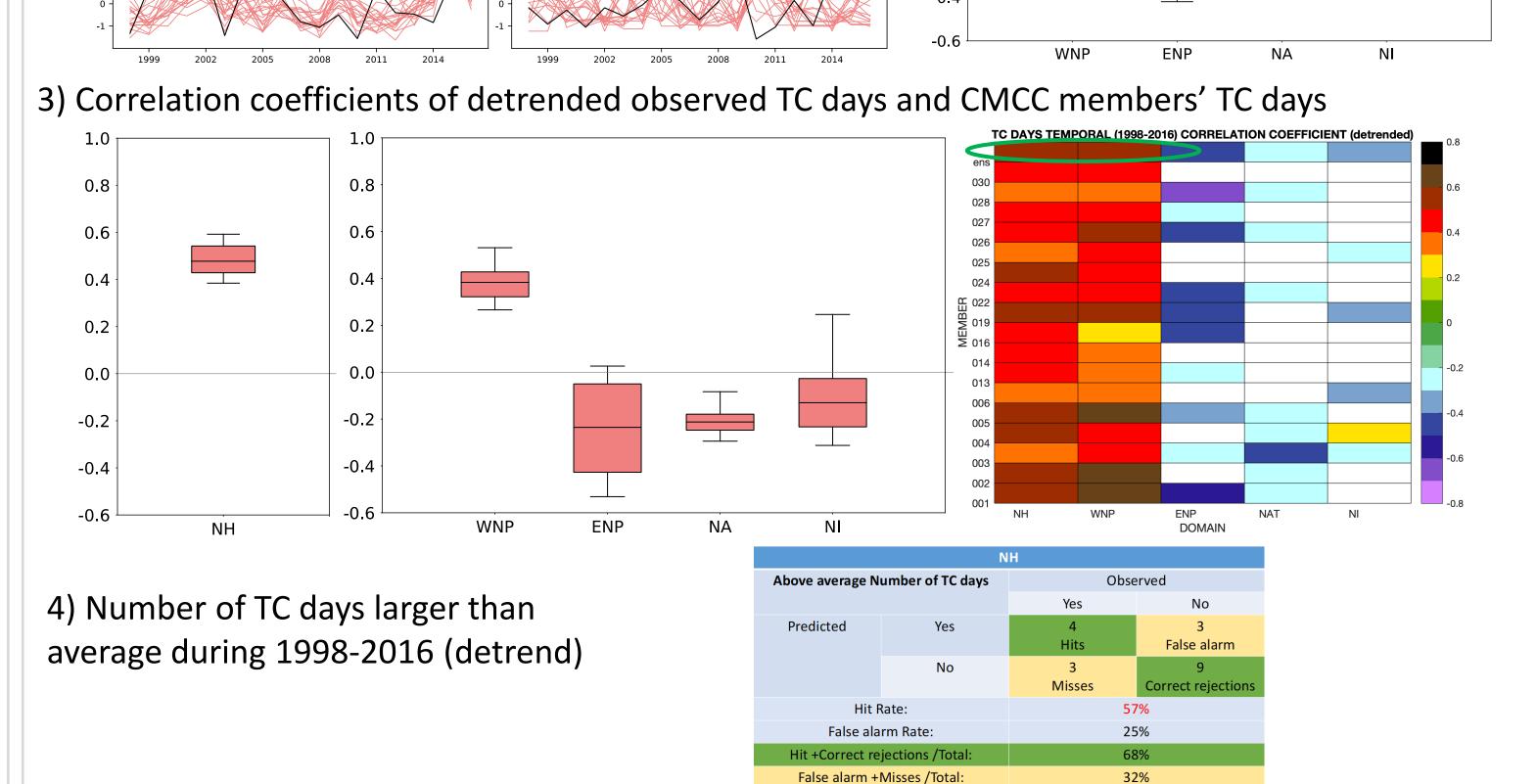
Background

Tropical Cyclones (TCs) are one of the most significant weather hazards in tropical regions; with strong wind, storm surge, and extreme precipitation, TCs cause a huge number of deaths and millions of losses of property after landfalling.

Hurricane Florence on the US southeast coast.

Tropical cyclone Idai made landfall.

Observation (IBTrACS) 2) The new CMCC SPS3.5 model can well capture the TC spatial distribution pattern of 6h conditions while underestimating its absolute values. SPS ensembles mean (Number of TC/year conditions 6-hourly in 5x5 box) 3) CMCC model captures TC best over the Pacific, while lower capability over the Atlantic and North Indian Ocean. Spatial correlation coefficient (only ocean) -0.2


Data and Methods

Data:

1) Observations and global climate models (GCMs)

	Observations	and CN	ИСС	
nternational Best Track Archive fo limate Stewardship (IBTrACS)	r 1998-2016		3hourly	
uro-Mediterranean Center on limate Change (CMCC) Seasonal rediction System (SPS3.5)	1998-2016		Resolution: large ensem 6hourly	0.5 degree, able members
Start month=7			Nino3.4	I index ACC evolution
Time period: 1998-2016			5 —	
July August September lethods:		forecast (month)	4 -	
ENP NA	WI WI	Leadtime	1 - 0 -	MAY JUN JUL AUG SEP OCT NOV DEC Start date
	Operational :	set-up		Otari date
• Ten (10) atmospheric I.C.s are provided by the 10 ERA5 analyses each, interpolated to the CA integrated in time in the SPS3.5 s actual forecast start-date (1rst or 00:00). • Three (3) land state I.C.s are obtained analyses performed with Clatmospheric fields from differ (ECMWF, NCEP, linear interpolation) • Perturbed ocean I.C.s are created in the interpolation of atmospheric introduction of stochastic physics, step.	analysis step), forcing and	10 atmospher (12h back lagg time each + Sl forecast) 3 CLM4.5 for with ECMWF NCEP atmosp forcing to La Surface 9 OCEAN ANA esulting from assimilation	270 ICs rced and heric and	40 forecast members each lasting 6 months
Check relative vorticity at latitude or	evel pressure distance of 2° longitude from ity maximum,	Warm-co greater respect to	ore temperature than 1°C with the surrounding temperature.	For each potential storm condition, the algorithm verifies the presence of storms during the following 6-h time period within a

WNP is better in representing TC interannual variability TC days/year--NH Normalized Correlation coefficient 1) The capability 400 of the sum of TC days simulation in the North Hemisphere 2) The capability of the sum of TC days simulation in Basins Correlation coefficient

Conclusions

- 1) CMCC SPS3.5 system captures well the spatial distributions of TCs in the North Hemisphere, although with some underestimation of its absolute values.
- 2) It captures TC spatial distributions best over the Pacific, while lower capability is shown over the North Atlantic Ocean and North Indian Ocean.
- 3) In terms of the simulated TC days and their variability in time, we found the model performs well in Western North Pacific only.

Future research: Evaluating 40 members instead of 17 members; Investigating the large-scale parameters (CAPE, wind share, relative humidity, etc) associated to different cases; Evaluating 6 forecast months; Evaluating different start months in SPS3.5; Higher resolution data: next generation

Tropical Cyclone Activity in CMCC SPS Seasonal Forecast (in preparation).

	SPS3.5 (2020–2024)	SPS4 (2024–)
Ocean	NEMO3.6 1/4° x 1/4° – 50 levs	NEMO4 1/4° x 1/4° – 70 vertical levs
Atmosph.	CAM5.3 0.5° x 0.5° – 46 levs ~ 60km	CAM6 0.5° x 0.5° – <u>83 vertical levs ~80km</u> improved stratosphere dyn.
Land	CLM4.5 + River routing scheme	CLM5 + River routing scheme
Sea-ice	CICE4 (1 ice cat)	CICE6 (3 ice cat)
Initial Conditions	Ocean Analysis (CMCC) Atmosphere Analysis (ECMWF) Land Surface Analysis(CMCC)	Ocean <u>and Sea-Ice</u> Analysis (CMCC) Atmosphere Analysis (ECMWF) Land Surface Analysis (CMCC)

The new CMCC SPS3.5 model can well capture TC spatial distributions Obs_1070 TC counts 1) The model can well capture TC spatial distributions over the Pacific and the western Atlantic Ocean while underestimating TC counts. Example of 6 members over 31 members: ens001 SPS_215 TC counts ens003 SPS_195 TC counts ens002 SPS_208 TC counts ens005 SPS_215TC counts ens004 SPS_180 TC counts ens006 SPS_232 TC counts

the center of the storm.

Acknowledgement CMCC SPS group Yang, Z.*, E. Scoccimarro, M. Benassi, A. Borrelli, A. Sanna, S. Tibaldi, A. Navarra, and S. Gualdi, Evaluation of