

# Spectrum Sharing via Collaborative RFI Cancellation for Radio Astronomy

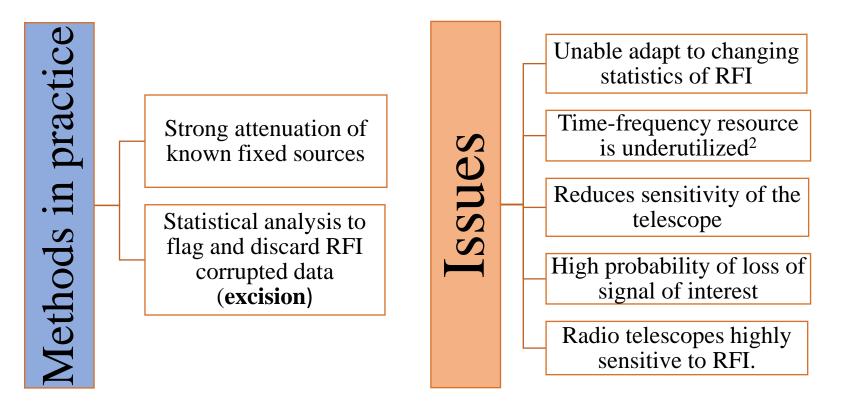
Maqsood Careem, Shuvam Chakraborty, Aveek Dutta, Dola Saha

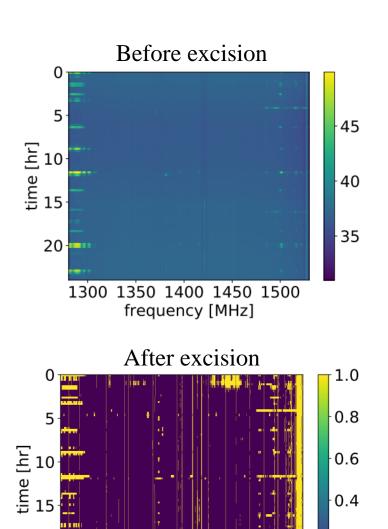
Mobile Emerging Systems & Applications (MESA) Lab
Department of Electrical & Computer Engineering

University at Albany, SUNY

**Gregory Hellbourg** 

Department of Astronomy
California Institute of Technology






# Motivation

## RFI Mitigation (active)





RFI flagging and excision<sup>1</sup> (including H1 line)

1300 1350 1400 1450 1500 frequency [MHz]

20

0.2

<sup>&</sup>lt;sup>1</sup> Obtained from Deep Synoptic Array (DSA-110) at OVRO

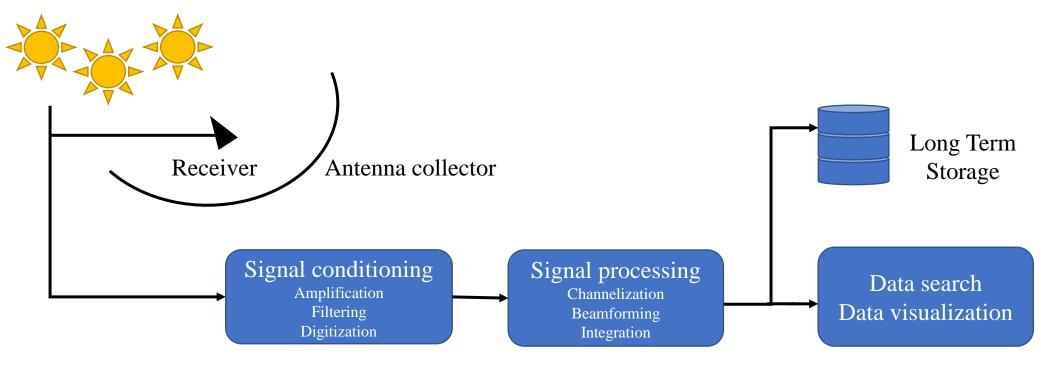
<sup>&</sup>lt;sup>2</sup>Tuned to minimize non-detection resulting in significant data loss

#### Contribution

- We propose a collaborative RFI mitigation method that reduces excision by 89.04 %
- We characterize the RFI at its source (base station for LTE) using Eigendecomposition
- We exploit the shared statistical properties of the signal to nullify the effect of RFI and reuse the reconstructed space signal.

Conflicting needs of RF and Astro communities

## Advances in comm. systems


- Out of band emission
- Intermodulation product

#### **Larger Bandwidth**

- Higher sensitivity
- Frequency shifting spectral lines

# Signal Models

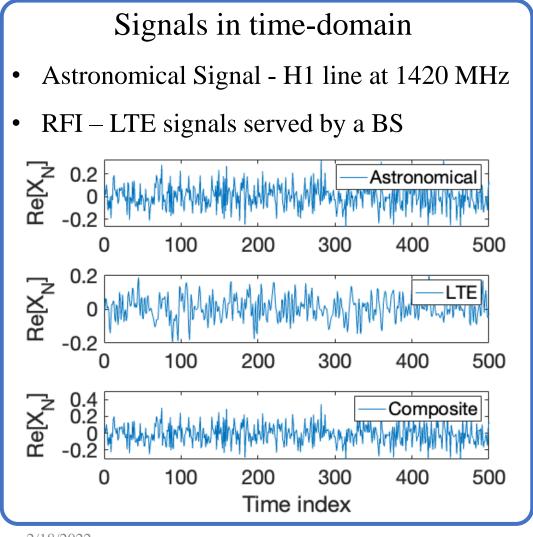
## Acquisition of Astronomical Signals at Telescope

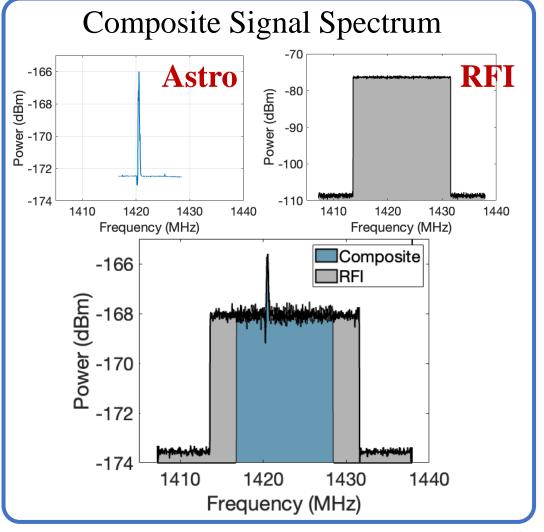


| Telescope parameters | Signal duration (s) | Number of antennas in DSA-110 | Coarse channel width (MHz) | Fine channel width (kHz) | Signal of<br>Interest | Location in spectra (MHz) |
|----------------------|---------------------|-------------------------------|----------------------------|--------------------------|-----------------------|---------------------------|
| Values               | 4                   | 25 (time of capture)          | 11.7                       | 30.5                     | Hydrogen (H1) line    | 1420                      |

## Telescope Signal Model

 $x_{f_c}[n] = x_A[n] + x_N[n] + x_R[n] \approx x_N[n] + x_R[n]$   $x_{f_c}[n] \sim \mathcal{NC}(x_R[n], \sigma^2) \quad x_A[n] \sim \mathcal{NC}(0, \sigma_A^2) \quad x_N[n] \sim \mathcal{NC}(0, \sigma_N^2)$ RFI contribution


Channelized baseband signal at center frequency  $f_c$  at time sample n


Contribution of astronomical sources in telescope field of view

System noise contribution

# Collaborative RFI Cancellation

## Temporal & Spectral Characteristics





## A. Eigenspace-based Characterization

#### Characterization:

- RFI at BS
- Composite sig at telescope

#### Karhunen-Loeve Transform: KLT

- Applicable to any signal type
- Decomp into adaptive basis
- Detects weak signals
- Optimal in MMSE sense

Implemented using Singular Spectral Analysis for practicality.

#### Characterization

#### 1. Input sample sequence

$$\mathbf{x=}[x_0,x_1,x_3,\ldots,x_N]^T$$

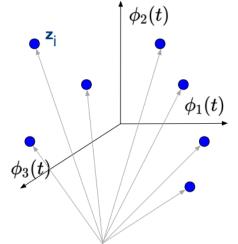
2. (L x K = N-L+1) Hankel matrix

$$\mathbf{U} = egin{bmatrix} x_0 & x_1 & x_2 & \dots & x_K \ x_1 & x_2 & & & dots \ x_2 & & & dots \ dots & & & x_{K+L-3} \ dots & & & x_{K+L-2} \ x_L & \dots & & x_{K+L-2} & x_{K+L-1} \end{bmatrix}$$

3. Covariance matrix

$$\mathbf{R}_{xx} = \mathbb{E}[\mathbf{U}\mathbf{U}^H]$$

4. Eigen-decomposition


$$\mathbf{R}_{xx} = \mathbf{\Phi} \Lambda \mathbf{\Phi}^H$$

$$\Lambda = \mathrm{diag}\{\lambda_0,\lambda_1,\ldots,\lambda_M\}$$

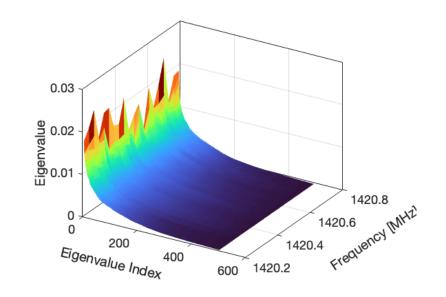
#### Reconstruction

**5. SSA implementation of KLT** 

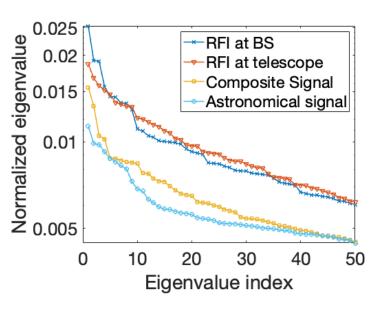
$$\mathbf{z}_i {=} \mathbf{\Phi}^H \mathbf{x}_i$$



Time series x projected on to orthogonal Eigenfunctions


6. Inverse-SSA (Inverse-KLT)

 $\hat{\mathbf{x}} = \text{DiagonalAverage}(\mathbf{\Phi}\mathbf{z})$ 


## Eigenspectra at Base Station & Telescope

#### Characterization at:

- Base Station:
  - RFI + Noise
  - RFI kernel:  $\Phi_R$
  - Shared with telescope
- Telescope:
  - Astro sig + RFI + Noise
  - Astronomical Kernel:  $\Phi_T$
  - Used to cancel RFI



Composite signal at telescope



Eigenvalue comparison

11

## B. RFI cancellation with eigenspace projection

#### Orthogonal projector for RFI

• Using  $\Phi_R$  shared by BS:

$$\mathbf{P}_{\mathbf{\Phi}_R}^{\perp} = \mathbf{I} - \mathbf{\Phi}_R \left(\mathbf{\Phi}_R^H \mathbf{\Phi}_R\right)^{-1} \mathbf{\Phi}_R^H$$
 $\mathbf{P}_{\mathbf{\Phi}_R}^{\perp} x_R[n] = 0$ 

- Nullifies RFI in composite signal.
- Does not assume separability of RFI and Astro signals.

#### RFI cancellation at telescope

1. Projection of eigenspace at telescope:

$$\widehat{\mathbf{\Phi}}_T = \mathbf{P}_{\mathbf{\Phi}_R}^{\perp} \mathbf{\Phi}_T$$

- Subspace-based removal of RFI
- 2. Reconstruction using Inverse-KLT:
  - Hankel Matrix:

$$\widehat{\mathbf{U}}_T = \widehat{\mathbf{\Phi}}_T \mathbf{z}_T$$

• Astronomical Signal:

$$\hat{x}_T[n] = rac{1}{a} \sum_{k=b}^c \hat{\mathbf{U}}_T^{(k,n-k+1)}$$

a, b, c depend on the sample index n

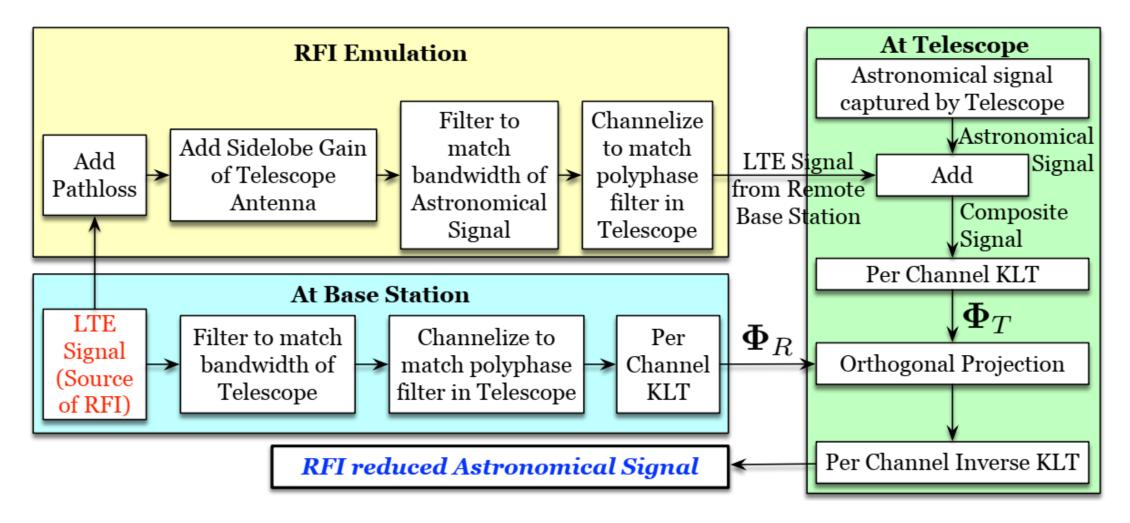
## RQF: Reconstruction Quality Factor

• Measures the combined accuracy of KLT decomposition and eigenspace-based cancellation of RFI.

$$ext{RQF} = rac{ ext{RFI-Free Power}}{ ext{RFI Power}} = rac{\left\|x_N
ight\|^2}{\left\|x_T - \hat{x}_T
ight\|^2} = rac{\left\|x_N
ight\|^2}{\left\|\epsilon_r
ight\|^2}$$

• Derivation of the average RQF

$$\mathbb{E}\{ ext{RQF}\} = \boxed{rac{\sigma_N^2}{\sigma_{ ext{est}}^2}} igg(1 + 2rac{N-1}{N^2}igg)$$


 $\epsilon_r[n] \sim \mathcal{NC}(0, \sigma_{\text{est}}^2)$  cumulative estimation and reconstruction error

>10 else is detrimental to radio astronomy [1]  $\rightarrow$  Lower bound RQF<sub>ref</sub>

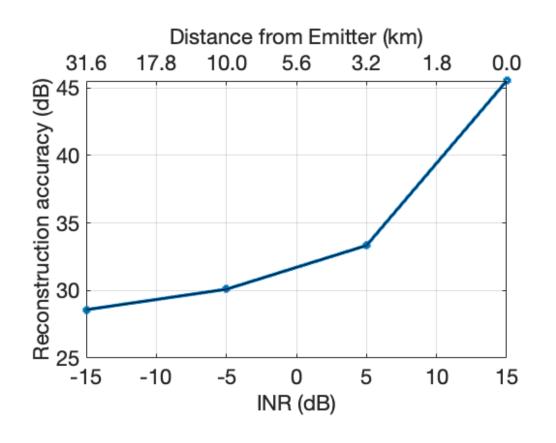
Number of samples in signal under evaluation

# Experiments

## System Simulation for Validation of RFI Mitigation Apparatus



### Parameters for RFI Simulation


| Bandwidth (MHz)*              | 20     |  |
|-------------------------------|--------|--|
| Occupied Bandwidth (MHz)*     | 18.015 |  |
| Frame duration (ms)*          | 10     |  |
| Subframe duration (ms)*       | 1      |  |
| FFT length*                   | 2048   |  |
| Guard length*                 | 847    |  |
| Number of Resource Blocks*    | 100    |  |
| Number of Frames <sup>1</sup> | 400    |  |

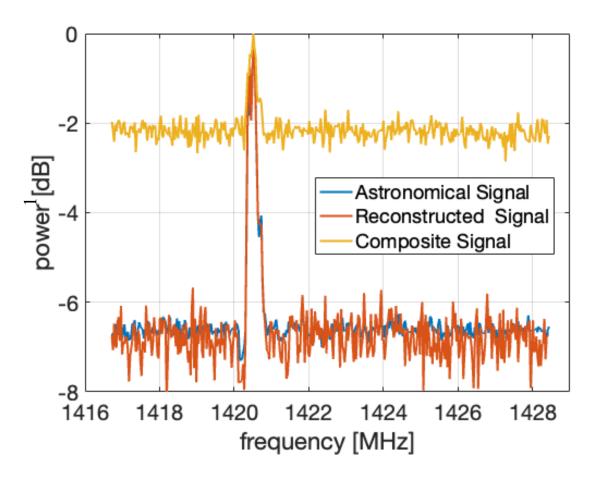
<sup>\*</sup>From 3GPP standardization.

<sup>&</sup>lt;sup>1</sup>To match astronomical signal duration.

# Results

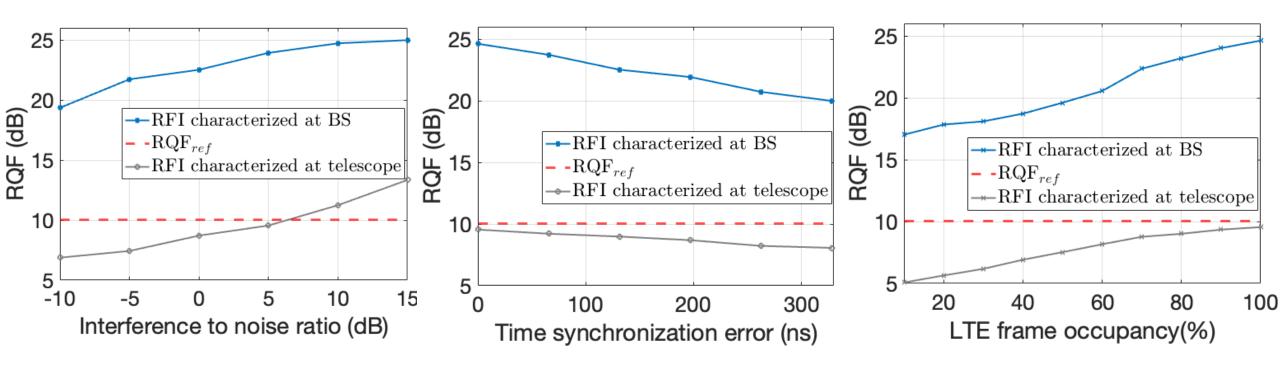
## Reconstruction Accuracy of a Sample Signal over INR




Performed on a sample of the LTE signal

Reconstruction accuracy :  $20\log_{10}\left(\frac{\|x_R\|}{\|x_R-\hat{x}_R\|}\right)$ 

 $x_R$ : True signal


 $\hat{x}_R$  : Reconstructed signal

## Reconstructed Signal Compared to True Astronomical Signal



<sup>&</sup>lt;sup>1</sup>Power levels are relative to noise floor (-174 dBm) indicating the baseline

## RQF Variation across Parameter Space of RFI<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>The parameters for reconstructed signal in previous slide: INR (5 dB), Time sync error (0 ns), Frame occupancy (100%)

#### Discussion

- 1. This work proposes sharing stochastic characterization of the RFI at its source, the cellular base station, with the telescope to cancel the incident RFI
- 2. This approach promotes collaborative spectrum sharing between the active and passive users of the spectrum
- 3. This method is deployable on current radio telescope
- 4. Managing computation cost remains a challenge due to the large eigenvalue problem
- 5. latency in collaboration can potentially be avoided using reference antenna at the observatory

## Thank You! Questions and feedback

(schakraborty@albany.edu, mabdulcareem@albany.edu)

#### Acknowledgment