A Global Overview of the Radio Frequency Interference (RFI) Sources as Detected by the MeerKAT Telescope

Isaac Sihlangu, SARAO
Email: isihlangu@sarao.ac.za

N. Oozeer, B. Bassett
Overview

- MeerKAT Telescope
- Why this work?
- Use Case
- MeerKAT RFI Data Structure
- KATHPRFI Framework
- Results
- Conclusion

This presentation will cover some work published in I. Sihlangu et al, J. of Astronomical Telescopes, Instruments, and Systems, 8(1), 011003 (2021).
MeerKAT
- Number of antennas: 64
- Dish diameter: 13.5 m
- Minimum baseline: 29 m
- Maximum baseline: 8 km
- Frequency bands (receivers):
 - 0.58 - 1.015 GHz (UHF-Band)
 - 1 - 1.75 GHz (L-Band)
 - 2 - 4 GHz (S-Band)
Why this work?

- Understanding the Radio Frequency Interference (RFI) environment for astronomy sites is the drive for this work.
- RFI Plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up.
- Understand Internal (generated by instruments) or External (originates from intentional or unintentional radio emission generated by man).
Use case

- **Astronomers**: to optimise flagging, and planning observations
- **Operations**: to schedule desired critical observations and
- **RFI-WG/Stakeholders**: by providing an alert system if level of RFI goes beyond a critical threshold
MeerKAT Data Processing Flow
Typical MeerKAT Bandpass with RFI Spikes
MeerKAT RFI Flags

- Flag files are built around the concept of three-dimensional flag array $[T, F, B]$.
- Flags are stored as 8-bits (uint8), where each bit is a different kind of flag.

<table>
<thead>
<tr>
<th>Value</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reserved0</td>
</tr>
<tr>
<td>2</td>
<td>static</td>
</tr>
<tr>
<td>4</td>
<td>cam</td>
</tr>
<tr>
<td>8</td>
<td>data_lost</td>
</tr>
<tr>
<td>16</td>
<td>ingest_rfi</td>
</tr>
<tr>
<td>32</td>
<td>predicted_rfi</td>
</tr>
<tr>
<td>64</td>
<td>cal_rfi</td>
</tr>
<tr>
<td>128</td>
<td>postproc</td>
</tr>
</tbody>
</table>
ingest_rfi

- Produced at the ingest step (i.e L0), and is the high time resolution RFI detection
- Uses simple Mean Absolute Deviation (MAD) statistics, runs along **Frequency** axis
- Flagged CBF dumps are excised (removed) from the average of SDP dump
- Excision in influenced by static, cam and ingest_rfi flags
Based on the classic AOflagger (Offringa et al. 2012)

- Runs along **Time** and **Frequency**
- Each baseline is treated differently
- The flagger, first find a smooth background on previously un-flagged data and then sum-threshold
KAT HISTORICAL PROBABILITIES OF RFI [KATHPRFI]

Dimensions = [T, F, B, Az, El] = [24, 4096, 2016, 24, 8]

- Approximately 850 hours of observation was used.
- Equivalent to 106 TB
Probability Calculations:

Probability in a given voxel:

\[P(RFI|t,v,b,el,az) = \frac{\alpha_{t,v,b,el,az}}{\alpha_{t,v,b,el,az} + \beta_{t,v,b,el,az}} \]

Probability for a given dimension:

\[P(RFI|v) = \frac{\sum_{t,b,el,az} (\alpha_v)}{\sum_{t,b,el,az} (\alpha_v + \beta_v)}. \]

\(\alpha \) - Number of RFI points in a voxel

\(\beta \) - Number of non-RFI points in a voxel
Time-Frequency Dependency

- 3 Major culprits are: GSM, DMEs and GPS Satellite
- Observe RFI increase during the day
- The increase correlates with when human activities start
- There exist a correlation between the 1090 MHz DME frequency and time of the day
- Around 30% of the L-band is affected by the RFI

I. Sihlangu et al 2021
Known UHF-RFI
Baseline Dependency

I. Sihlangu et al 2021
Direction Dependency

I. Sihlangu et al 2021
RFI Evolution in the Clean-Band

\[W = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i} \]

\[SD = \sqrt{\frac{\sum_{i=1}^{N} w_i (x_i - \bar{x}^*)^2}{\frac{(M-1)}{M} \sum_{i=1}^{N} w_i}} \]
Conclusion

- We found the allocated Global System for Mobile (GSM) Communications, flight Distance Measuring Equipment (DME), and UHF-TV bands populate the MeerKAT band.
- The L-band suffers from DMEs, GSM, and the GPS satellites.
- The fraction of L-band flagged data in November 2018 shows a 300% increase.
- In the UHF band, we found that the early morning is least impacted by outliers.
- Unusual and unexpected events in the `clean’ MeerKAT L-band.
Acknowledgements

- This research has been conducted using resources provided by the United Kingdom Science and Technology Facilities Council (UK STFC) through the Newton Fund and the South African Radio Astronomy Observatory.