

A Global Overview of the Radio Frequency

Interference (RFI) Sources as Detected by the

MeerKAT Telescope

Isaac Sihlangu, SARAO

Email: isihlangu@sarao.ac.za

N. Oozeer, B. Bassett

Overview

- MeerKAT Telescope
- Why this work?
- Use Case
- MeerKAT RFI Data Structure
- KATHPRFI Framework
- Results
- Conclusion

This presentation will cover some work published in <u>I. Sihlangu et al</u>, J. of Astronomical Telescopes, Instruments, and Systems, 8(1), 011003 (2021).

MeerKAT

Why this work?

- Understanding the Radio Frequency Interference (RFI) environment for astronomy sites is the drive for this work
- RFI Plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up
- Understand Internal (generated by instruments) or External (originates from intentional or unintentional radio emission generated by man)

Use case

- Astronomers: to optimise flagging, and planning observations
- Operations: to schedule desired critical observations and
- RFI-WG/Stakeholders: by providing an alert system if level of RFI goes beyond a critical threshold

MeerKAT Data Processing Flow

Typical MeerKAT Bandpass with RFI Spikes

MeerKAT RFI Flags

- Flag files are built around the concept of three-dimensional flag array [T, F, B].
- Flags are stored as 8-bits (uint8), where each bit is a different kind of flag.

Value	Name
1	reserved0
2	static
4	cam
8	data_lost
16	ingest_rfi
32	predicted_rfi
64	cal_rfi
128	postproc

Data processing flow

ingest_rfi

- Produced at the ingest step (i.e L0), and is the high time resolution RFI detection
- Uses simple Mean Absolute
 Deviation (MAD) statistics, runs
 along Frequency axis
- Flagged CBF dumps are excised (removed) from the average of SDP dump
- Excision in influenced by static, cam and ingest_rfi flags

cal_rfi

- Based on the classic
 AOflagger (Offringa et al.
 2012)
- Runs along **Time** and **Frequency**
- Each baseline is treated differently
- The flagger, first find a smooth background on previously un-flagged data and then sum-threshold

(Meer)KAT HISTORICAL PROBABILITIES OF RFI [KATHPRFI]

Dimensions = [T, F, B, Az, El] = [24, 4096, 2016, 24, 8]

- Approximately 850 hours of observation was used.
- Equivalent to 106 TB

Probability Calculations:

Probability in a given voxel:

$$P(RFI|t, \nu, b, el, az) = \frac{\alpha_{t,\nu,b,el,az}}{\alpha_{t,\nu,b,el,az} + \beta_{t,\nu,b,el,az}}$$

Probability for a given dimension:

$$P(RFI|\nu) = \frac{\sum_{t,b,el,az} (\alpha_{\nu})}{\sum_{t,b,el,az} (\alpha_{\nu} + \beta_{\nu})}.$$

 α - Number of RFI points in a voxel

 β - Number of non-RFI points in a voxel

Time-Frequency Dependency

- 3 Major culprits are: GSM, DMEs and GPS Satellite
- Observe RFI increase during the day
- The increase correlates with when human activities start
- There exist a correlation between the 1090 MHz DME frequency and time of the day
- Around 30% of the L-band is affected by the RFI

I. Sihlangu et al 2021

Known UHF-RFI

Baseline Dependency

I. Sihlangu et al 2021

Direction Dependency

RFI Evolution in the Clean-Band

— Weighted average

Conclusion

- We found the allocated Global System for Mobile (GSM) Communications, flight
 Distance Measuring Equipment (DME), and UHF-TV bands populate the
 MeerKAT band
- The L-band suffers from DMEs, GSM, and the GPS satellites
- The fraction of L-band flagged data in November 2018 shows a 300% increase
- In the UHF band, we found that the early morning is least impacted by outliers
- Unusual and unexpected events in the `clean' MeerKAT L-band

Acknowledgements

 This research has been conducted using resources provided by the United Kingdom Science and Technology Facilities Council (UK STFC) through the Newton Fund and the South African Radio Astronomy Observatory.