

Radio Frequency Interference in the SMAP Radiometer

Priscilla N. Mohammed^{1, 2}, Alexandra Bringer³, Sidharth Misra⁴, Paolo de Matthaeis^{1, 5} Joel T. Johnson³, Jeffrey R. Piepmeier¹, Melanie Brunner⁶

¹NASA's Goddard Space Flight Center, ²Morgan State University, Baltimore, MD 21251 USA,, Greenbelt, MD 20771 USA, ³The Ohio State University, Columbus OH 43210, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91106 USA, ⁵University of Maryland Baltimore County, Baltimore MD 21250 USA, ⁶NASA Glenn Research Center, Cleveland OH 44135, USA

Introduction

- SMAP (Soil Moisture Active Passive) was launched by NASA January 31, 2015, to measure soil moisture of the Earth's land surface
- The SMAP radiometer operates in the L-band protected spectrum (1400-1427 MHz) that is known to be vulnerable to radio frequency interference (RFI)
- SMOS and Aquarius provided a good indication of the RFI environment at L-band
- On orbit results show that RFI is indeed a problem
- RFI increases brightness temperatures
 Can lead to dry biases in soil moisture retrieval
- Can lead to dry biases in soil moisture retrievals if undetected
- SMAP radiometer includes a digital backend enabling multiple RFI detection and mitigation capabilities; detection and mitigation processing performed on ground

SMAP RFI Detection and Filtering

SMAP RFI Detection

SMAP RFI Detection Rate

TA H-pol before and after filteringPeak hold data 02/02/2022 to 02/08/2022

Different Types of RFI

Peak hold data 02/02/2022 to 02/08/2022

SMAP RFI Detectors

A. Bringer *et al.*, "Properties of the RFI Environment at 1400–1427 MHz as Observed by the Soil Moisture Active/Passive Mission Microwave Radiometer," in *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 14, pp. 7259-7267, 2021, doi: 10.1109/JSTARS.2021.3092996.

Locating Sources with SMAP Data

- Each blue diamond is found by clustering RFI footprints from a single pass (half orbit)
- Centroid (blue star) is found using all the clusters from several passes
- clusters from several passes
 The black triangle is the known source location
- Algorithm used to find sources and geolocated sources are included in RFI reports filed
- Y. Soldo *et al.*, "Location of Radio-Frequency Interference Sources Using the SMAP L-Band Radiometer," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 56, no. 11, pp. 6854-6866, Nov. 2018, doi: 10.1109/TGRS.2018.2844127.

Probability Plot

RFI Reporting

- RFI reported to authorities through NASA spectrum office
- Report a different country/region every month
- SMAP and SMOS agree to report on the same country every month
- Report for each source contains
 - Location coordinate
 Brightness temperature in K
 - Brightness temperature in KEstimate of EIRP of transmitting source
 - Estimate of EIRP of transmitting source
 # of observations of source over analysis period
- # of observations of source
 Date source was last seen
- Spectral plot of each source, peak hold plot and probability plot of country being reported

SMAP RFI Environment

polarization shows similar results.

•Because the number of RFI sources are large, 2 criteria were defined to select the sources that have been reported:

- o RFI level > 10 K
- o Persistent in time i.e., present in at least 25% of SMAP overpasses during a month
- •A table is generating every week using the information of the 4 previous weeks:
- Over the 6 years of SMAP missions, 300 tables were generated
 Their analysis allow to track RFI changes temporally and spatially