

Impact of Initial Condition Perturbations and Stochastic Physics Scheme (Random Parameters) on convective scale ensemble forecasts of extremely heavy precipitation events over India

NCMRWA

S. Kiran Prasad, Abhijit Sarkar, Gauri Shanker and A K Mithra

Ministry of Earth Sciences Earth System Science Organization

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

National Centre for Medium Range Weather Forecasting

0.1544

0.3035

0.6293

0.1644

0.3361

0.5689

0.1452

0.3765

0.6787

0.1630

0.3324

0.6090

Objective and Experimental setup

Objective: To study the impact of initial and boundary condition perturbation along with stochastic physics on precipitation forecasts of extremely heavy precipitation events over India.

Experimental Setup: Experiments have been performed using the NCWRWF regional ensemble prediction system (Based on the Met Office Regional Ensemble Prediction system :UM version 11.1) for the extremely heavy rain events over Uttarakhand and Kerala states on India.

Experiment-1: Using Initial condition perturbations(ICP), Boundary condition perturbation(BCP) and Random Parameters (RP); (*ICP+BCP+RP*.)

Experiment-2: Using ICP and BCP and no RP; (ICP+BCP).

Experiment-3: Using only ICP; (ICP).

Above mentioned experiments have been performed for a lead time of 24hour (day-1), 48hour(day-2), and 72hour(day-3).

Verification statistics such as CRPS, Briers Score, RMSE, Spread etc are used to evaluate the forecasts.

Salient features of NCMRWF Regional Ensemble Prediction System (NEPS-R)

NEPS-Regional (4km) (UM Version 11.1)

Domain with Orography

Kerala Heavy Rain Event of 16th Oct 2021 Ensemble Mean Rainfall (Day-1)

No of ensemble members	Control + 11 members								
Driving model	Global EPS- N1024 (NEPS-G)								
Domain	62°E-106°E, 6°S-41°N								
Horizontal Resolution	4km with 1200 grid points in the east-west and North-South direction								
Vertical levels	80 levels up to 38.5 km								
Science configuration	Pre-chill RA2T (conserve)								
LBC frequency	3hr								
Forecast Length	75hrs								
Model time step	120 seconds								
Convection	Explicit								

Uttarakhand Heavy Rain Event of 18th Oct 2021

RMSE and Spread

0.3700 0.3222

0.1707

0.6486

0.1864

0.5697

0.1565

0.3289

0.5554

0.17453

0.35375

0.16649

0.36751

0.62899

Briers Score

Briers Score

Briers Score 0.63492

(>65.5mm)

(>15.6mm)

(>2.5mm)

			Day-1			Day-2			Day-3		
Date	Case	statistics	ICP+BCP+RP	ICP+BCP	ICP	ICP+BCP+RP	ICP+BCP	ICP	ICP+BCP+RP	ICP+BCP	ICP
18 Oct	Uttarakhand	CRPS(mm)	16.791	16.589	16.602	24.476	24.919	24.460	22.482	21.656	23.196
		Briers Score (>195mm)	0.0656	0.0602	0.0614	0.1001	0.0916	0.0959	0.0870	0.0923	0.0919
		Briers Score (>115mm)	0.0965	0.0920	0.0941	0.1313	0.1247	0.1300	0.1147	0.1182	0.1188
		Briers Score (>65.5mm)	0.1481	0.1438	0.1450	0.1787	0.1757	0.1779	0.1604	0.1619	0.1643
		Briers Score (>15.6mm)	0.3587	0.3547	0.3543	0.3583	0.3587	0.3603	0.3443	0.3324	0.3344
		Briers Score (>2.5mm)	0.5587	0.5603	0.5536	0.5169	0.5107	0.5118	0.5020	0.5101	0.5004

SUMMARY

• The study returns contrasting results in the two cases.

- Precipitation intensity decreases (maximum of up to 4cm/day)with the use of Random Parameters(RP) Scheme on day-1 and day-3, increases (maximum of up to 5cm/day) in day-2 in the Uttarakhand case.
- CRPS increases on day-1 and day-3, decreases on day-2 with the use of RP scheme. Briers Score(BS) for precipitation thresholds >65.5mm, >115mm and 195mm is better without using RP scheme on day-1 and day-2, better on day-3 using RP scheme.
- RMSE is relatively the same in with and without RP experiments and a slight decrease in spread is observed on all days in the Uttarakhand case.
- Precipitation intensity increases (maximum of up to 4cm/day)with the use of Random Parameters(RP) Scheme on day-1 and day-2, decreases (maximum of up to 4cm/day) in day-3 in the Kerala case.
- CRPS increases on day-1 and day-3, decreases on day-2 with the use of RP scheme. Briers Score(BS) for precipitation thresholds >65.5mm, >115mm and 195mm is better without using RP scheme at all lead times using RP scheme.
- RMSE decreases slightly on day-1 and day-2 and increases slightly on day-3 in with RP experiment and spread increases marginally on day-1 and decreases on day-2 and day-3 in with RP experiment in the Kerala case.
- The decrease/increase in precipitation mentioned above is mostly confined to the regions of maximum precipitation, while the rest of the areas have a decreasing trend with the use of RP scheme in both the cases.
- More cases need to be studied to arrive at a robust conclusion regarding the impact of RP scheme.

Contact : <u>skp29879@gmail.com</u>, kiran@ncmrwf.gov.in

CECMWF

Workshop on Model Uncertainty, 9-12 May 2022

