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Motivation: PMP estimates & dam safety

• Probable Maximum Precipitation (PMP): “theoretically the greatest depth 
of precipitation that is physically possible ”

• Current PMP estimation guidelines in the U.S. (“HMR PMP”)
• Described in Hydrometeorological (“HMR”) Reports 
• Scale precipitation of a severe historical storm (observed) 

• Recently developed “Model-based PMP”
• Leverage NWP models by reconstructing and amplifying historical 

storm by scaling moisture in the boundary conditions 

• Possible bias in the reconstructions and model uncertainty main source of 
concern regarding the credibility of model-based PMP 

• Goals: Improve the robustness of model-based PMP by identifying sources 
of model uncertainty and reflect their impact on the range of possible 
PMP estimates by providing an ensemble of PMP values

Methods: Study Area and Model Setup

• Feather River watershed (3600 sq mi drainage area), Oroville dam, California 
• 2 major atmospheric river storms: Feb. 1986 and Jan. 1997 
• Baseline setup following Martin et al. (2019) with 9 and 3km nested domains
• Initial/boundary conditions provided by ERA5 reanalysis (30 km)

WRF Option Scheme name
Microphysics Thompson scheme 
Cumulus scheme Grell-Devenyi 
Boundary layer scheme Yonsei University Scheme 
Short & long-wave physics RRTMG Schemes 
Surface layer physics Revised MM5 scheme
Land surface physics Unified Noah Land Surface Model 

Methods: Storm Maximization

• Relative Humidity Maximization (Ishida et al., 
2015): reconstruct and amplify historical storm

• Add moisture at the model boundaries (in the 
forcing dataset): 100% relative humidity at all 
locations and model levels

• Added moisture leads to a stronger 
atmospheric river and more precipitation than 
in the reconstructed historical storm

Methods: Ensemble Design

• Each of the 2 storms 
(only one shown here) 
has reconstructed and 
max’d version

• Each version has 56-
member ensemble 
sampling known sources 
of uncertainty

a) Initial conditions 
b) Choice of 

parametrization 
c) Model error 
d) Combinations of 

the above

Findings

• Model Reconstructions (blue)
• Feb. 1986  has ~90mm bias and twice as much spread than Jan. 1997
• Ensemble mean captures temporal pattern of precipitation better than 

baseline configuration for both storms

• Maximized simulations (red)
• Maximization produces a ~100 mm increase in 72-hour total 

precipitation (both storms)
• Similar amount of spread (~90 mm) and magnitude of maximized 

precipitation totals (~400 mm) for both storms

Feb. 1986 Jan. 1997

• Ensemble 90th percentile precipitation totals are at most 110% of the single-
value estimates for both storms

• I.e., maximized totals are not likely to be much greater (due to uncertainty) 
than the single-value estimate indicates 

Feb. 1986 Jan. 1997

• Numerical weather modeling represents an important advance over 
traditional PMP guidance

• Good quality of WRF precipitation reconstructions in the Western U.S.
• Ongoing work on WRF microphysics, bias correction and uncertainty in 

observations will bring further improvements 
• Model error and uncertainty are modest: not be a barrier to further 

development of model-based PMP 
• Characterization of uncertainty should become part of PMP estimation

• Need to (1) work with a larger sample of historical storms and (2) develop 
process understanding of precipitation response and (3) evaluate other 
uncertainty e.g., how much moisture should be added

Conclusions
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