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Introduction
Accurately addressing model uncertainties with a

consideration of the enhanced effect of nonlinearities in a

high resolution convective-scale system is a crucial issue for

performing convection-allowing ensemble prediction

systems (CAEPSs). In this study, a conditional nonlinear–

stochastic perturbation method is developed to

simultaneously consider both a stochastic and a nonlinear

representation of model uncertainties associated with physics

parameterization in the Global and Regional Assimilation

and Prediction Enhanced System (GRAPES)-CAEPS with a

horizontal resolution of 3 km.

The nonlinear forcing singular vector (NFSV) for a nonlinear

representation of model uncertainties and the Stochastically

Perturbed Parameterization Tendencies (SPPT) scheme for a

stochastic representation of model uncertainties, are applied.

Two experiments were carried out over South China for a

month (1–30 May 2020), one with a SPPT scheme and the

other with a nonlinear–stochastic perturbation using a

combination of SPPT and NFSV schemes. The combination

of SPPT and NFSV schemes is compared with the SPPT

scheme.

Conclusion

▪ The combination of SPPT and NFSV schemes can produce more reliable precipitation forecasts, and has a beneficial effect on the overall probabilistic forecasting performance.

▪ Overall, combining the SPPT and NFSV schemes improves the overall probabilistic skill and has an advantage over the SPPT scheme.

▪ Adding additional state-independent nonlinear noise may contribute to a more comprehensive characterization of model error for representing model uncertainties in CAEPSs.

Results

▪ Horizontal distributions of the calculated NFSV

Figure 1 shows the horizontal distributions of NFSVs that are obtained using the principal component analysis (PCA)-based particle

swarm optimization (PSO) algorithm. We find that for different variables at different heights, the magnitude of the NFSV

perturbation is different, and, in general, the NFSV perturbations are relatively scattered for all levels and variables. The calculated

NFSVs are then forced on the physical parameterized tendencies of zonal wind, meridional wind, temperature and humidity of the

model in the CAEPS.

▪ Precipitation verification

Horizontal distributions of monthly-averaged 24-h accumulated precipitation for the SPPT (Fig. 2a) and SPPT_NFSV (Fig. 2b)

experiments are shown. And the observed precipitation shown in Fig. 2d. Comparing and assessing the simulated precipitation of

SPPT (Fig. 2a) and SPPT_NFSV experiment (Fig.2b) with the observed precipitation distribution (Fig. 2d), we find that the

SPPT_NFSV experiment (Fig. 2b) can better simulate the main concentrated observed precipitation area, and can successfully

simulate the center of the precipitation shown in the observed precipitation (Fig. 2d). In addition, the difference in precipitation (Fig.

2c), which is defined as the difference in precipitation of SPPT_NFSV minus that of SPPT, demonstrates that, when compared to the

SPPT experiment, the SPPT NFSV experiment can successfully simulate a main concentrated precipitation area that corresponds to

the observed precipitation (Fig. 2d). This indicates that the introduction of NFSV perturbation has a beneficial positive impact on the

simulation of precipitation and can improve the skills and effects of precipitation simulation.

▪ Verification for upper-air and surface weather variables 

A set of verification measures was employed to assess the upper-air and surface weather variables: The domain-averaged ensemble

spread, RMSE, spread-error consistency, CRPS, rank histograms, and outlier scores. The results show that the SPPT_NFSV

experiment is capable of increasing the ensemble spread and reducing the RMSE for both surface and upper-air weather variables;

therefore, the corresponding consistency is improved. Furthermore, the CRPS, and the rank histogram and outlier score are also

improved, which implies that the SPPT_NFSV experiment has a beneficial effect on the overall performance of probabilistic

forecasting.
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Objectives

This study aims to investigate if the combination of SPPT

and NFSV schemes is compared with the SPPT scheme to

investigate whether the conditional nonlinear–stochastic

perturbation method that combines nonlinear and stochastic

schemes can represent model uncertainty better than the

traditional stochastic SPPT approach.
Fig. 1. Horizontal distribution of NFSVs for (a, e, i, m, q) U-tendency, (b, f, j, n, r) V-tendency, (c, g, k, o, s) T-tendency, and (d, h, l, 

p, t) Q-tendency at (a, b, c, d) 1000 hPa, (e, f, g, h) 850 hPa, (i, j, k, l) 700 hPa, (m, n, o, p) 500 hPa, and (q, r, s, t) 200 hPa. 

FIG. 2. Horizontal distribution of monthly-averaged 24-h accumulated precipitation for the (a) SPPT and (b) SPPT_NFSV 

experiments and (c) the difference of precipitation (defined as the precipitation of SPPT_NFSV minus that of SPPT), and (d) the 

corresponding observed precipitation, as well as the spread of precipitation for (e) the SPPT and (f) the SPPT_NFSV experiments.


