

The effect of stochatically perturbed parametrisation tendencies (SPPT) on rapidly ascending air streams

Moritz Pickl¹ (moritz.pickl@kit.edu), Simon T. K. Lang², Martin Leutbecher² and Christian M. Grams¹

¹Institute of Meteorology and Climate Research, Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, United Kingdom

(1) Background and Motivation

Why SPPT and rapidly ascending air streams / warm conveyor belts (WCBs)

(2) Research question, Data and Methods

Are rapidly ascending air streams affected by stochastic physics perturbations through SPPT?

- SPPT represents model uncertainties related to physical parametrizations by randomly perturbing the net tendencies from all physical processes (Leutbecher et al., 2017)
- Physics tendencies and hence the introduced perturbations are large in regions of rapidly ascending air streams, as these are influenced by diabatic heating from cloud-condensational processes

Fig. 1: One-hr accumulated temperature tendencies due to parametrisations averaged between 700 and 500 hPa from the ERA5 short-term forecast initialised at 1800 UTC on March 8, 2016 at lead time 6 hr (shading) and masks of rapidly ascending air streams in their ascending stage (see methods) for the sane valid time (green contours). Reprinted from Pickl et al., 2022.

(3) Impacts of SPPT on trajectories

Trajectory counts

Experimental design

- 3 IFS ensemble experiments with CY46
 - SPPT (SPPT & initial condition perturbations)
 - IC-ONLY
 - SPPT-ONLY
- 32 initial times in summer/autumn 2016, 12 days lead time, 20 perturbed members

Lagrangian detection of rapidly ascending air streams / WCBs

- 48-h forward trajectories starting on a global equidistant grid below 700 hPa with Lagranto (Sprenger and Wernli, 2015)
- Consider only such trajectories that ascend by at least 600 hPa in 2 days
- Automated post-processing implemented into the IFS-suite enables the trajectory computation in the ensemble

(4) Eulerian perspective & Mechanism

- SPPT systematically increases the trajectory count
- Magnitude is more pronounced in the tropics than in the extratropics and scales with the latent heating rate along the trajectories
- Differences between experiments are independent of lead-time
- IC-perturbations do not affect the counts

Trajectory characteristics

- Increase of the number of strongly heated trajectories with SPPT results from larger effect in the (sub-) tropics

 Positive perturbations are more effective in triggering ascent than negative perturbations in preventing it in a non-linear system characterized by threshold behaviour (for example atmospheric convection)

(5) Conclusions

• SPPT systematically increases the frequency of rapidly ascending air streams / WCBs without changing their characteristics

(6) Outlook

uncertainty • Do model other schemes (e.g. SPP, STOCHDP) result in similar effects?

• Classifying trajectories into a weakly and strongly heated regime shows that the physical characteristics remain unchanged by SPPT

 Acceleration of vertical motions Process-oriented perspective how stochastic perturbaon tions affect the model climate

• Can changes to the large-scale circulation (Rossby wave amplitude, blocking) through SPPT be attributed to the modified distribution of vertical velocities?

References

Sprenger and Wernli, 2015: The LAGRANTO Lagrangian analysis tool - Version 2.0. Geosci. Mod. Dev.

DOI: <u>10.5194/gmd-8-2569-2015</u>

Leutbecher et al., 2017: Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Q. J. R. Meteorol. Soc. DOI: <u>10.1002/qj.3094</u>

Pickl et al., 2022: The effect of stochastically perturbed parametrisation tendencies (SPPT) on rapdily ascending air streams. Q. J. R. Meteorol. Soc.. DOI: <u>10.1002/qj.4257</u>

Acknowledgments

This work is funded by the Helmholtz Association as part of the Young Investigator Group SPREADOUT (grant VH-NG-1243).

KIT – The Research University in the Helmholtz Association

www.kit.edu