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Abstract
The formation of clouds, precipitation, and radiative forcing depends on cloud mi-

crophysics. However, cloud microphysical processes act on scales too small to be

resolved directly. Parameterizations of these processes are a well-known source

of uncertainties in weather and climate models. The goal of a sensitivity analy-

sis is to quantify and attribute the uncertainty of a cloud microphysical model to

different parameters. Typically, a sensitivity analysis considers only a few model

parameters and requires multiple simulations with varying perturbations of model

parameters.

We apply algorithmic differentiation to identify parameters with a large impact and

assess the point in time at which they affect the simulation by calculating hundreds

of gradients during the simulation. This method avoids the need for multiple sim-

ulations by running only a single simulation at the cost of roughly one third more

compute time.

Sensitivity Analysis With a Single Simulation

Using Algorithmic Differentiation (AD), we can

• efficiently evaluate the Jacobian of any implemented model,

• identify parameters of interest via the magnitude of their gradients,

• and identify time steps with distinct process activations.

How do we get there?

• Implement Seifert-Beheng two-moment cloud scheme similar to COSMO

and ICON in C++

•Simulate microphysics along given trajectories and analyze the

sensitivities

• Validate sensitivities by comparing to perturbed parameter ensembles

• Identify parameters of interest via the magnitude of their gradients

• Identify time steps with different sensitivity patterns

Gathering Sensitivities

Fig. 1: An example for sensitivities for rain mass density and its five most influential parameters in this time period.

• Sensitivity: How large is the impact if we perturb a parameter by 10%?

•Simulate microphysics along given trajectories and gather gradients

• AD: Predict impact of model parameters at every time step using the gradients

Validating Sensitivities with Ensembles

Fig. 2: An example for sensitivities for rain mass density and its five most influential parameters in this time period.

• Run ensembles every 30 min along the unperturbed trajectory for 30 min

• Each member has one randomly perturbed model parameter drawn from a uni-

form distribution

•Compare AD-estimated and ensemble-estimated deviation for validation

Gradients and Ensemble Spread

Fig. 3: Comparison of ensemble-estimated vs AD-estimated deviation for water vapor, where (b) is zoomed in at the

top right of (a). Each symbol indicates one model parameter. The ellipses are 90% confidence ellipses.

• As guidance: Grouping parameters into different categories

• Parameters with large gradients show higher correlations to ensemble-

estimated deviation

• The correlation is not linear, i.e., the AD-estimated deviation can overestimate

the ensemble-estimated deviation by up to eight magnitudes

Identifying Patterns
With Met3D, we can investigate gradients of dif-

ferent trajectories.

•Gradient w.r.t. parameter for CCN activation

(green) vs gradient w.r.t. parameter for cloud

droplet collision (purple)

• Alternating gradients and therefore processes

only for slantwise ascending trajectories

Fig. 4: A subset of trajectories related to Vladiana. Labels starting with ’d’ are gradients w.r.t. different parameters.

Discussion and Outlook
• Algorithmic Differentiation can be used to gather sensitivities at every time step

for hundreds of parameters at once

• The most influential parameters for the immediate further evolution of the cloud

can be determined with AD by applying ranked correlation

•Gradients at every time step are relevant for more extended simulation pe-

riods (at least 30 minutes; see 90% confidence ellipses depicting a high rank

correlation between AD- and ensemble-estimation)

• The most important process representations involving uncertain parameters for

our WCB trajectories are the mass-diameter and fall velocity-diameter rela-

tionships, the CCN activation, and heterogeneous freezing
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