ESA-ECMWF WORKSHOP 2021: Machine Learning for Earth System Observation and Prediction # POLITECNICO DI TORINO Department of Electronics and # Journal reference A. Montanaro, D. Valsesia, G. Fracastoro, E. Magli, "Self-supervised learning for joint SAR and multispectral land cover classification", arXiv preprint arXiv:2108.09075, 2021 # The Problem: Weakly Supervised Learning in Remote Sensing Imagery - End-to-end DL models not able to outperform standard ML methods - Lack of large labeled datasets - Difficulty to fuse multiple imaging modalities - ▶ Some solutions: - ► Transfer Learning from CV suffer from domain gaps - ▶ RGB vs Multichannel - ▷ Object-Centric vs Many Objects at different scale - Different Spatial Resolution among multisensor data - Self-Supervised Learning is strictly related to CV: - Pretext Tasks involve geometric transformations - Contrastive Learning is not able to build HR feature maps - \triangleright CV \rightarrow Well separated clusters - ▶ RS → Overlapped clusters (metropolis and village) ### **Spatial-Spectral Context Learning** - Universal Framework for multichannel data - Extracts Features able to capture material properties - ▶ 2 Self-Supervised approaches trained sequentially #### UniFeat - ▶ Promoting pixel-wise similarity of low-level features between two different channels - ▶ Single-Channel Feature Extractor and Projection head #### ▶ CoRe - ▶ Reconstruct a degraded input to represent the spectrum highly informative for material properties - Degradation Process (Channel Dropout, Cutout, Blur) #### Data Fusion Contest 2020 (Track 2) ► High Resolution Land Cover Classification #### Dataset: - ▶ Train: 986 images Test: 5128 images - ▶ Annotated HR (10m) maps 10 classes - S1 (2 polarization bands)S2 (13 multispectral bands) ### Experimental Setting - Linear Protocol - ▶ Fine-Tuning ## **CNN Architecture** # Results No. samples 800 1000 | | Baseline | ImageNet | SimSiam | SSCL | |-----------|----------------|----------------------------------|----------------------------------|----------------| | Forest | 74.6 ± 5.7 | 77.7 ± 4.7 | $\textbf{75.5} \pm \textbf{1.3}$ | 83.8 ± 1.7 | | Shrubland | 56.3 ± 1.9 | 50.7 ± 7.0 | $\textbf{46.4} \pm \textbf{7.1}$ | 60.1 ± 4.5 | | Grassland | 33.3 ± 5.9 | $\textbf{35.4} \pm \textbf{8.1}$ | 37.4 ± 4.2 | 39.5 ± 8.0 | | Wetlands | 11.0 ± 2.1 | 9.3 ± 3.7 | 13.4 ± 3.6 | 12.1 ± 2.4 | | Croplands | 32.1 ± 5.3 | 36.8 ± 5.4 | 28.1 ± 4.1 | 29.4 ± 1.1 | | Urban | 79.6 ± 3.9 | 77.1 ± 3.5 | 79.8 ± 6.9 | 78.9 ± 4.1 | | Barren | 40.9 ± 5.2 | 42.2 ± 6.7 | 43.4 ± 10.3 | 44.8 ± 5.3 | | Water | 99.2 ± 0.2 | 99.3 ± 0.1 | 99.3 ± 0.1 | 99.3 ± 0.1 | | AA | 53.4 ± 1.3 | 53.6 ± 0.9 | 52.9 ± 1.1 | 56.0 ± 1.1 | | OA | 65.1 ± 1.9 | 66.4 ± 0.8 | 64.6 ± 1.3 | 67.8 ± 0.9 | - Legend - ▶ Baseline: Standard train procedure with randomly initialized model - ▶ ImageNet: Train by using Transfer Learning from an architecture trained on ImageNet dataset. - SimSiam: Train by finetuning the pretrained self-supervised model through SimSiam technique. - SSCL: Train finetuning the proposed self-supervised model. 200