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POSTPROCESSING BENCHMARKS

All postprocessing benchmark techniques are locally estimated, i.e. a separate
model is fitted for each station.

ENSEMBLE POSTPROCESSING OF WIND GUSTS

Ensemble forecasts are subject to systematic biases and dispersion errors, which
can be corrected with statistical postprocessing. We postprocess wind gust
ensemble forecasts with a focus on European winter storms.

Statistical methods:

To]
—

—— QObservation
Sorted Ensemble
—— Post—processed

Only the ensemble forecasts of wind gusts are used as predictors.

* Ensemble Model Output Statistics (EMOS)
* Member-by-Member Postprocessing (MBM)
* |sotonic Distributional Regression (IDR)
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COSMO-DE-EPS forecasts subject to bias (left) and dispersion errors (right) and postprocessed EMOS forecasts. Machine lea rning methods:

Incorporation of additional predictors feasible.

» Gradient Boosting extension of EMOS (EMOS-GB)
« Quantile Regression Forests (QRF)

As a first step towards regime-dependent postprocessing for wind gusts, we sys-
tematically compared eight postprocessing methods (Schulz and Lerch, 2021).

ENSEMBLE AND OBSERVATIONAL DATA

e 20-member COSMO-DE-EPS « Time range: 08/12/2010-31/12/2016
e [nitialization time: 00 UTC | Lead times: 0—-21h
 Ensemble forecasts of 61 variables * Observations at 175 SYNOP stations

COMPARISON OF POSTPROCESSING METHODS

Training from 2010-2015 for each lead time separately, evaluation in 2016.
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* Distributional Regression Network (DRN)
« Bernstein Quantile Network (BQN)
» Histogram Estimation Network (HEN)
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Left: Skill of the methods w.r.t. the EPS in terms of the CRPS dependent on the lead time. Higher means better.
Right: Best method at each station in terms of the CRPS, averaged over all lead times.

Station Latent o 5 () 3  Overall, the postprocessing methods improve the predictive performance w.r.t.
the ensemble prediction system (EPS) by 20-50%.
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tCRPS /
/" BernsteinQuantile Network ) sistently outperform the statistical benchmarks by 5-10%.
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The machine learning methods learn physically consistent relations, as exem- .
plified for the neural network approaches. The day of the year is an important | ° ° 0 ° 2 % % %
predictor in the morning and evening, radiation is important during the evening
transition of the planetary boundary layer.

Threshold in m/s

Skill of the methods w.r.t. the extendend probabilistic climatology (EPC) in terms of the BS dependent on the
threshold. Higher means better. The quantiles of the observed wind gusts are indicated by the vertical lines.

| Day of the year Net short wave radiation flux (ensemble mean)

) ) - Similar results to the CRPS, again the networks are superior.

: 5 £ - While the skill of the EPS vanishes the larger the thresholds become, the skill
1 = /3 s of the postprocessing methods remains high.
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Feature importance of the day of the year (left) and the ensemble mean of the net short wave radiation flux (right) for
the three network variants dependent on the lead time. Higher means more important.

Results in terms of the Brier score (BS):
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