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v Oil spills represent one of the major threats to marine ecosystems;

v The common adopted data flow need images to be transmitted to the ground before 
analysing process starts. This could delay the identification of oil spills;

v Onboard identification can: reduce the latency in identification of these phenomena; 
reduce power consumption by reducing the amount of data to be transmitted on ground; 
and reduce storage needs by avoiding to save useless images (sea only images).
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v Onboard processing can be unfeasible for the onboard CPU 
of low budget nano- and micro-satellite missions;

v Leveraging hardware accelerators can be an affordable
solution:
v COTS for CNN acceleration are available;
v They are low cost, low power solutions to bring CNN on 

resource constrained devices;
v Some of them have already passed preliminary radiation 

tests and have been used in LEO missions.
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v From a SAR image a 
multiclass mask is 
generated.

v Each pixel of the 
mask is assigned to 
one of the following 
classes:
• Sea
• Oil spill
• Look-Alike
• Ship
• Land

Pro:
• Known dataset, useful to share 

results of different methods
• Pre-processed to correct image 

artifact

Cons:
• Modest number of samples
• Skew classes
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Deep-Lab 
V3 [1] 96.4 53.4 55.4 27.6 92.4 65 117 4901 2100
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Common challenges when adopting CNNs hardware accelerators:
vHardware accelerators usually features a small amount of 

memory;
vNot every type of CNN’s layer is allowed to run on every

hardware accelerator;
vDevelopment of CNNs usually focus on best performance 

neglecting hardware constraints making state-of-the-art CNNs 
not the best choice for resource constrained systems.

Challenges

Dataset 
Description [1]
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