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Multivariate post-processing techniques are developed to retain the spatial, temporal,

or Inter-variable dependencies that univariate post-processing fails to preserve. )
(o Forecast data from ECMWEF, with 50 ensemble members; The same dataset as has\
been used in Rasp and Lerch (2018)1.
Karlsruhe Institute of Technology | © 10 years of data available, splitting into training (2007-2014), validation (2015), and

Chair of Statistics and Econometrics test (2_016) sets. _ _ _ _
o Focusing on preserving the spatial dependency (multiple locations) of temperature
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Qd a forecast in multivariate post-processing.
0 > o ol o Auxiliary weather variables: ‘'d2m’, ‘cape’, ‘q_pl850’, ‘'sp’, ‘tcc’, ‘'u_pl500’, ‘u_pl850’,
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o 00 poog 8 85 den _ 'v_pl500", ‘v_pI850", ‘gh_pl500’, ‘u10’, ‘ssr’, ‘v10’, ‘str’, ‘sshf’, ‘slhf’. )
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7 28 ° -.goo‘f‘fg”% (Standard approaches for multivariate post-processing:
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;— %;;-_Dg'o Dogoip %000 » Copula-based, two-step methods;
: A O @) 0o O . . .
® 52 «D o egﬂ'%%%oo% % oo 8 S » FIrst post-process ensemble forecasts univariately;
S 506% © 0Fe oo 0OL 5 . - .
= 0":83 fé?%g?c%zgg 0999°" » Then reorder post-processed samples to reintroduce multi-dimensional
' o ‘n ‘) ]
~ %%Gocgicgg%%éj%% o® dependencies, based on the rank order structure learned from
D o0 o .
50 ?“ﬁ.ﬁ?o %%Gfamgo » raw ensemble members (ensemble copula coupling?, ECC),
o ﬂ@ag%?%oggg;ﬂ o > or a set of historical observations (Schaake shuffle3, SSh),
;f" o OE;S‘%: . C » or a fitted Gaussian copula (Gaussian copula approach?, GCA). y
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J [ " | Generative machine learning models
i { [build upon the work of Janke and Steinke (2020)° |
5.0 7.5 ] 1t0-3 12.5 150 | v/ Conceptually simpler, new class of data-driven multivariate distributional regression
ongitude
. . —— models;
Fig. 1: Locations of weather stations in the dataset; v Mult At babilistic f ¢ di f btained fout. b : th
Spatial dependence between 10 nearby stations of ultivariate prooablliStiC Torecasts are airecuy obtained as output, bypassing tne
temperature forecast is considered in this study. copula-based two-step approaches;
Inputs: mean and variance of v Allows generation of unlimited number of post-processed samples;
target variable x and v Enables incorporating additional weather variable information into the multivariate
auxiliary variables a; (i = 1,2, ...) K post-processing' /
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Fig. 3: Boxplots of skill scores for different multivariate post-processing approaches; Comparison between Schaake shuffle (‘ssh’), Gaussian Systems (PMAPS). IEEE,
copula approach (‘gca’), and the generative ML model (‘ig323’); All skill scores are computed taking ECC as the reference forecast, using 2020.
energy score, variogram score, and continuous ranked probability score. ~ <
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