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1. Aims and Introduction
• The current main driver of change in 

Antarctica is ocean driven melting of 
the floating portions of the ice sheet 
(ice shelves).

• Ice sheet models model this process 
either (1) with coupled ocean models 
that are very computationally expensive 
or (2) with simple parameterisations
that generally fail to capture the correct 
spatial distribution of melt.

• Here, we propose a deep learning 
methodology (MELTNET) as a middle 
ground between these two approaches. 

• Due to the dearth of observations and 
as a first step, we train and measure 
the success of this approach on 
synthetically generated input data.

• An ocean model (NEMO) calculates melt 
rate fields for thousands of input 
geometries and these are considered 
our observations for the purposes of 
training and validation.

2. Synthetic input generation

3. Deep learning methodology

• The required inputs for both NEMO and 
MELTNET are ice shelf geometry and 
ocean conditions (temperature and 
salinity).

• We generate entirely random synthetic 
geometries with a high degree of 
variation, with ice shelf thickness 
profiles based on analytical solutions.

• Temperature and salinity forcing 
originate from World Ocean Atlas 
(WOA) data in the deep ocean around 
Antarctica.

• To generated an unlimited number of 
possible ocean conditions but retain 
physically plausible profiles, these finite 
observations are used to train a GAN 
type network that outputs synthetic 
forcing.

• Synthetic inputs are sent to the NEMO ocean model which calculates a melt rate 
field. This melt rate field is converted to a discrete number of melt rate labels.

• Separately, a denoising AutoEncoder network is trained to map from an image of 
labelled melt rates to a continuous melt rate field.

• A segmentation network, based on the SegNet architecture, takes synthetic 
inputs in the form of a 4-channel image learns to reproduce the labelled melt 
rates from NEMO.

• Finally, the labelled melt rates output by the segmentation net are input to the 
autoencoder network to output the melt rate prediction.

4. Results
• We compare MELTNET results to the ocean 

model output and two commonly used melt 
rate parameterisations (PICO and PLUME, 
Figure 2).

• Two tunable parameters in the PICO and 
PLUME models were tuned to minimise the 
misfit to melt rates of the training set.

• MELTNET outperformed PICO and PLUME in 
terms of NRMSE for 95% of the validation 
set and in terms of correlation coefficient 
for 99% of the validation set (Figure 3).

Figure 1. Workflow for the training and application of MELTNET. Inputs (green box) are given to the NEMO ocean model which predicts melt rates 
(magenta box) and together the inputs and melt rates are used to train the neural networks (blue box). Once trained, MELTNET takes input 
geometry, temperature and salinity and outputs a continuous melt rate field.

Figure 2. A sample of input geometries (first row) and the resulting melt rate 
predictions by the NEMO ocean model (second row), MELTNET (third row), PICO 
parameterisation (fourth row) and PLUME parameterisation (fifth row). Both the PICO 
and PLUME parameterisations have been optimised to minise the misfit to the NEMO 
model. The number in the bottom left corner of each image tile represents the total 
melt rate for each synthetic ice shelf. The validation set consists of 132 geometries 
and for each geometry we score MELTNET based on the misfit and correlation 
compared to NEMO. The nine geometries that form this figure are selected by evenly 
sampling the from the distribution of MELTNET scores.

Figure 3. NRMSE (panel a) and correlation coefficient (panel b) 
distributions for all members of the validation set for MELTNET, 
PLUME and PICO compared to NEMO.
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