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Introduction Results
BL!rning fos_sil fuels leads to ai_r a_nd water _pollutio_n, a_nd constitutes the main | Evaluation Metrics:
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assess the amount of released GHG emissions, is only required in some generation for different satellite observations
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Goal: In this work, we aim to predict the emission rates of GHGs from power = o it (i=3)?
plants at a given time through observations of the emitted smoke plumes onoo .S
from Earth-observing satellites. 3 ) . e
5 1500 e i Performance metrics derived for
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% Target Test set
% Power generation - MAE (MW) 180
— Power generation - RMSE (MW 220
Dataset E "’_IAE\MSE Power generation -R? o 0.69
Our dataset is constituted of 1600 (1) Sentinel-2 multispectral images . — — — 282gﬁfgii:}i:ﬁ:dtn&;) 22

centered over European Power Plants!, with (2) their corresponding plume
segmentation mask!, (3) the actual generation output at the timestamp?:3,
and (4) concurrent weather information4.

Groundtruth Power Generation (MW)

We are able to predict power generation rates to within 180 MW (MAE)

True Color Pl Mask Power T t Humidit Wind - Wind - ing i iSSi i ithi
T e Hme Tas Generation SR LT ey | ey translating into CO, emissions estimates to within 50 t/h (MAE).
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Multitask Learning Approach?d, extension of this Work — to
be presented at ‘Tackling Climate Change with Machine
Learning’ NeurlPS Workshop 2021

As an extension to this work, we propose an end-to-end method to predict
power generation rates for fossil fuel power plants from satellite images
based on which we estimate GHG emission rates. We present a multitask
500 274.5 84.1 >.41 1.47 deep learning approach able to simultaneously predict: (i) the pixel-area
covered by plumes from a single satellite image of a power plant, (ii) the
type of fired fuel, and (iii) the power generation rate. We then convert the

predicted power generation rate into estimates for the rate at which CO, is
We carefully divide our dataset into train (80%) and test (20%) sets making being emitted.

sure not to include the same site in more than one set.
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Diagram of the proposed multitask learning method
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(A_): We first segment the power plant’s plum_es from the satellite observatlo_n Y o MY Power generation - R 0.83
using a U-Net>, to extract the corresponding plume areas. The model is 2 2o -
trained using a dice loss, reaches a IoU of 0.61 and an accuracy at the £ 1000 .,*j,;:. .
image-level of 0.951. k5 , ".‘;
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(B): We feed the smoke plume area as well as weather data to an Extreme £ o A MléEL
Gradient Boosting model® to predict the generation output of power plants. B | i |
Weather data was added since environmental conditions may affect the shape 0 1000 2000 3000

Groundtruth Power Generation (MW
and extent of the plume. (MW)

(C): We estimate the CO, emission rates from the predicted power generation We find that our multitask |earning approach significantly boosts the
output by applying a fuel-dependant conversion factor’ distinguishing perfromance of our approach. It also allows us to learn power plant types

between coal (0.326 kg CO2/kWh) and natural gas (0.181 kg CO2/kWh) at _the same time, enabling us to use better conversion factor for the
estimation of CO, rates
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