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Introduction
Hyperspectral images
(HSIs) capture very
detailed information
about scanned objects
(Figure 1) and, therefore,
can be used to uncover
various characteristics of
the materials present in
the analyzed scene.

However, due to a large
amount of such data (i.e.,
its huge volume), HSIs are:
• Difficult to visualize,
• Difficult to analyze,

interpret, and label,
• Difficult and costly to

transfer (e.g., from an
imaging satellite).

Figure 1: Hyperspectral images contain a large number of
bands captured for a contiguous electromagnetic spectrum.

Therefore, we are lacking large and representative
ground-truth datasets that could be used to train AI
models for analyzing HSI in emerging EO applications.

Existing datasets for HSI classification
There exist state-of-the-art datasets for HSI classification, such as Indian Pines,
Pavia University, Salinas Valley, or University of Houston (Figure 2), but how can we
use them to train large-capacity deep learning algorithms for other EO applications?

Figure 2: Example hyperspectral scene (University of Houston [7]), together with the
corresponding ground truth delineating various objects of interest.
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Also, is it fair to quantify the performance of algorithms over the very same scene,
e.g., using random sampling for splitting into training and test sets? What if some
pixels can land in both training and test subsamples (for models that exploit
spectral and spatial information while classifying an incoming pixel, Figure 3) [1]?

Figure 3: Random pixel selection from the Indian
Pines dataset to the training and test sets
(overlapping yellow and red squares) can cause a
leak of information. Therefore, we can have over-
optimistic estimation of the classification
performance of the investigated spectral-spatial
algorithms. This figure comes from [1].

Lacking ground truth: The remedies
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Remedy 1: Data augmentation

Remedy 2: Transfer learning

Remedy 3: Unsupervised learning

Remedy 4: Creating new ground truth

Figure 4: Synthesizing artificial examples through data augmentation helps us increase the size of ground-truth datasets
based on the original data distribution, or benefit from ensemble-like approaches. This figure comes from [2].

In data augmentation, we synthesize artificial examples based on the available ground-truth data
(hence, such ground-truth examples must exist). For HSI, we can exploit generative adversarial
networks (GANs), noise injection, guided noise injection, and other augmentation techniques.

Data augmentation may be utilized before the training (to increase the size of the training
sample), and during the prediction, to benefit from the ensemble-like classification approach
(Figure 4) [2]. Note that some techniques, e.g., GANs, cannot be used during the inference.

The idea is to train efficient feature extractors from large training data (the source data), and later
fine-tune the classifier over the target data of interest (of a much lower size) [3]. As in data
augmentation, target data examples must exist.

Figure 5: In transfer learning, we build efficient (deep) feature extractors over the source (larger) data, and fine-tune the
classification part of a deep learning model over the target (much smaller) data of interest. This figure comes from [3].

The idea: group the input data to find coherent regions of similar characteristics (e.g., spectral)
without the ground truth, and then interpret the segmentation result (Figure 6).

Figure 6: Deep learning can be effectively used for extracting compressed representation of
the hyperspectral data (e.g., using various autoencoder-based deep architectures). The
interpretation of the segmentation result may be fairly easy, e.g., if we expect just two classes
of objects in a scene (on the left – forest vs. non-forest pixels), or quite challenging, if the
number of classes is huge (the upper images, segmented using Gaussian modeling and k-
means employed over original data and extracted features). This figure comes from [4].

Another advantage: unsupervised segmentation may be considered a pre-segmentation step
which – if followed by manual assignment of class labels to coherent image regions – can
significantly accelerate the process of generating ground-truth data for emerging use cases.

Creating new ground truth is always an option, but it is costly, time-consuming, does not scale well, is user/area
dependent… But capturing even limited ground truth may be coupled with unsupervised segmentation (and
intelligent data reduction and selection, e.g., through cloud detection for HSI captured on-board a satellite – do we
need cloudy areas at all?), thus can make the manual assignment of class labels easier (Figure 7).

Figure 7: Capturing in-situ measurements (violet points) over a large area may be coupled with unsupervised segmentation (see
Figure 6 in which the same area is pre-segmented). Why not to exploit two approaches in HSI analysis? This figure comes from [5].

Remedy 5: Towards digital twins (at the data level)
No ground truth? Why not to simulate it!

Simulators, that reflect the characteristics of a real piece of
hardware, can give us lots of advantages (not only in HSI
analysis, but also in e.g., detecting anomalies from telemetry):
• We can simulate various acquisition scenarios (e.g.,

atmospheric conditions) – capturing such real data would
be extremely costly (or impossible) [6].

• We can simulate noise of any characteristics, hence we can

verify the robustness of the deep learning algorithms (e.g., for HSI classification) against noise
that can (and will) happen in space [6].
• We can simulate lots of data with precise ground truth information (imagine capturing the real

life telemetry with all possible incorrect events for all hardware components…)
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