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Trends for Very High Resolution (VHR), Agile Earth Observation Satellite (AEOS) Mission Planning
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Ageing of weather forecast, together with the spatial and temporal cloud cover < 10%
resolution of weather data, have a high impact on the efficiency of Earth |
Observation satellites. —
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The next-generation of VHR AEOS (such as the Pléiades NEO system) b
feature higher resolution, a reduced swath and their acquisition and 5006 — REo
download plans are computed much more frequently. Therefore they =
. . Pléiades
rely more and more on short-term cloud cover nowcasting with 35% —
improve accuracy and a finer resolution.
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Nowcasting techniques (based on motion field extrapolation) usually | | | > forecastat
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provide a deterministic prediction of cloud cover but the uncertainty of
the prediction is usually unknown. Computaton  Upload
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Deep Learning to improve the quality and capture the uncertainty of cloud cover forecasts

: : : S "“4 Figure of Merit
A tailored Deep Learning model can ingest the latest cloud cover ) /for EO mission planning\
observations together with predictions of classical nowcasting L
techniques to estimate the probability of acquisition success of the :
candidate meshes to be acquired by the EO satellite. - ~
- | Aggregates
Tk Probability of acquisition
o - o success
\ Observation datasets / S ) : k /
t+15mn t+30mn frame_in frame_out
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Datasets archived at ECMWF, providing historical records and re- s A -

analyses worldwide for both cloud cover observation and forecast, can
be used to train the model.
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Recurrent convolutional multi-scale models, already popular for next
frames prediction in video sequences, are well adapted to our needs.
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Deep Learning to improve the quality and capture the uncertainty of cloud cover forecasts

The solution has first been compared to a naive persistent observation technique
in terms of Hit Rate and False Alarm Rate regarding acquisition success.

Hit Rate depending on elapsed time False Alarm Rate depending on elapsed time
for meshes of (20 km, 20 km) for meshes of (20 km, 20 km)
Next, through a realistic mission planning simulation, we have assessed the impact =i =i
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of ranking candidate acquisition based on the probability of success estimated by the
model against a classical approach relying on the forecasted percentage of clear sky. . «

Legacy weather ranking DL-based weather ranking
Raw clear sky percentage forecasted at the Estimated probability of success at the ey Il II
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score(t, lat, lon) = fp. (¢, lat, lon)
~ p(TCCreal < 10%)
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score(t, lat, lon) = 1-TCCq,...t(t, lat, lon)
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