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Trends for Very High Resolution (VHR), Agile Earth Observation Satellite (AEOS) Mission Planning
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The next-generation of VHR AEOS (such as the Pléiades NEO system)

feature higher resolution, a reduced swath and their acquisition and

download plans are computed much more frequently. Therefore they

rely more and more on short-term cloud cover nowcasting with

improve accuracy and a finer resolution.

Ageing of weather forecast, together with the spatial and temporal

resolution of weather data, have a high impact on the efficiency of Earth

Observation satellites.

Nowcasting techniques (based on motion field extrapolation) usually

provide a deterministic prediction of cloud cover but the uncertainty of

the prediction is usually unknown.

Deep Learning to improve the quality and capture the uncertainty of cloud cover forecasts

A tailored Deep Learning model can ingest the latest cloud cover

observations together with predictions of classical nowcasting

techniques to estimate the probability of acquisition success of the

candidate meshes to be acquired by the EO satellite.
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Datasets archived at ECMWF, providing historical records and re-

analyses worldwide for both cloud cover observation and forecast, can

be used to train the model.
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Recurrent convolutional multi-scale models, already popular for next

frames prediction in video sequences, are well adapted to our needs.

Deep Learning to improve the quality and capture the uncertainty of cloud cover forecasts

The solution has first been compared to a naive persistent observation technique

in terms of Hit Rate and False Alarm Rate regarding acquisition success.

Next, through a realistic mission planning simulation, we have assessed the impact

of ranking candidate acquisition based on the probability of success estimated by the

model against a classical approach relying on the forecasted percentage of clear sky.
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