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Dramatically improving accuracy.............
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Numerical Weather Prediction

Observations Data assimilation Numerical weather
—> —> forecasts
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Machine learning at ECMWF
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Research highlight: application in data assimilation

+ Data-assimilation blends observations and the forecast model to
generate initial conditions for weather predictions

* ltis possible to learn model error when comparing the model with
(trustworthy) observations

Two approaches:

* Learn model error within the 4DVar data-assimilation framework for
“weak-constraint 4D-Var”

» Learn model error from a direct comparison of the model trajectory
to observations or analysis increments using deep learning
(column-based or three-dimensional)
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Patrick Laloyaux, Massimo Bonavita and Peter Dueben @ ECMWF + Thorsten Kurth and David Matthew Hall @ NVIDIA



Research highlight: application in model component

To represent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model is
four time slower than the standard radiation scheme (Tripleclouds)
Can we emulate the difference between Tripleclouds and SPARTACUS using neural networks?
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Research highlight: application in post-processing

To learn IFS forecast error in 2m temperature and 10m
wind with respect to station measurements (SYNOP) using
three different machine learning techniques

e —e— Default bias correction
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Research highlight: Learning how to make use of exascale computing
— The MAELSTROM project oot
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The first datasets have been published! https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc6.pdf

https://www.maelstrom-eurohpc.eu/ @MAELSTROM _EU




We have recently published our machine learning roadmap
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Machine learning
at ECMWF:

A roadmap for the
next 10 years

Pater Dueben, Umberto Modigliani, Alan Geer,
Stephan Siemen, Florian Pappenberger,

Peter Bauer, Andy Brown, Martin Palkovié,
Baudouin Raoult, Nils Wedi, Vasileios Baousis

January 2021

htg_pg#g‘m?mwf.intlevent/ 232/
https? .ecmwf.int/en/elibrary/19877-machine-learning-ecmwf-roadmap-next-10-years

JupyterHub and
machine learning
libraries available

Machine learning
network established
and roadmap updated

One machine

learning conference
per year

Sufficient hardware
for machine learning
established

Objective 1

Explore machine
learning applications
across the weather
and climate prediction
workflow and apply
them to improve
model efficiency and
prediction quality.

loT data used
in operations

First machine

learning training course

Machine learning team
established at ECMWF

4 machine learning
benchmark datasets
published

Objective 2

Expand software
and hardware
infrastructure

for machine learning.

5 machine learning
applications integrated
in operational workflow

Machine learning
considered in
HPC procurement

Copernicus
ITTs involve
machine learning

Comprehensive and
well-documented machine
learning workflow in place

Objective 3

Foster collaborations
between domain and
machine learning
experts with the
vision of merging

the two communities.

2 use cases of machine
learning accelerators for
conventional modelling

Objective 4
Develop customised
machine learning
solutions for Earth
system sciences

that can be applied to
various applications
and at scale on
current and future

supercomputing
infrastructure.

Vision 2031

« It is difficult to distinguish
between machine learning
and domain sciences

+ Data handling fully capable
to serve machine learning
needs

« Fully supported diagnostic
tools via trustworthy Al

* Physical constraints can be
represented in deep learning

+ Use of machine learning
as easy and normal as
data re-gridding

Unsupervised learning
and causal discovery
used on a regular basis

Machine learning solutions
from end-users integrated
in workflow

Objective 5
Train staff and
Member

and Co-operating
State users and

organise scientific
meetings
and workshops.




A glimpse in to the future:
First seasonal simulation at 1.4km resolution on SUMMIT

2018110100+18h 2018110100+ 18h
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