

Machine learning on the Earth System with remote sensing

towards machines that we can understand and interact with.

Devis Tuia ECEO lab EPFL

EPFL Applying deep learning with optical remote sensing data seems very easy

June 28th 2018: *Bing releases 125 million Building Footprints in the US as Open Data* How?

Apply ResNet [He et al., 2015] + smart postprocessing

The low hanging fruit is a blessing...

- We can advance several applications with this technology from CS
- Massive increase of "DL-in-RS" papers

Web of science, 4.11.2021

The low hanging fruit is a blessing... in disguise

- We can advance several applications with this technology from CS
- Massive increase of "DL-in-RS" papers
- Kind of DL-winter already.

So we started thinking on what is exciting in AI4E0...

arXiv.org > cs > arXiv:2104.05107

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 11 Apr 2021]

Towards a Collective Agenda on AI for Earth Science Data Analysis

Devis Tuia, Ribana Roscher, Jan Dirk Wegner, Nathan Jacobs, Xiao Xiang Zhu, Gustau Camps-Valls

In the last years we have witnessed the fields of geosciences and remote sensing and artificial intelligence to become closer. Thanks to both the massive availability of observational data, improved simulations, and algorithmic advances, these disciplines have found common objectives and challenges to advance the modeling and understanding of the Earth system. Despite such great opportunities, we also observed a worrying tendency to remain in disciplinary comfort zones applying recent advances from artificial intelligence on well resolved remote sensing problems. Here we take a position on research directions where we think the interface between these fields will have the most impact and become potential game changers. In our declared agenda for AI on Earth sciences, we aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.

 Comments:
 In press at IEEE Geoscience and Remote Sensing Magazine

 Subjects:
 Computer Vision and Pattern Recognition (cs.CV); Signal Processing (eess.SP)

 DOI:
 10.1109/MGRS.2020.3043504

 Cite as:
 arXiv:2104.05107 [cs.CV] (or arXiv:2104.05107v1 [cs.CV] for this version)

 Help | Advance

EPFL Six exciting research directions

ESA / ECMWF workshop, November 2021

EPFL Six exciting research directions

Reasoning, encoding spatial thinking

Physics-based ML

Massive multi-source (audio / video / social media)

Interpretable models

Human machine interaction In natural language

Discovering causal relations

EPFL Two (out of six) questions to move forward

Understand what is going on within CNNs

XAI

Make them accessible to anyone

Interaction, NLP

EPFL What happens inside a CNN is a bit of a mystery...

EPFL What happens inside a CNN is a bit of a mystery...

EPFL What happens inside a CNN is a bit of a mystery...

 Image: state of the state

Zhou, Bolei, et al. "Learning deep features for discriminative localization.", CVPR. 2016.

11

EPFL Explaining what a neural network is doing is DIFFICULT

 Models can trick you by their capacity

[Adebayo et al., Sanity checks for saliency maps, NeurIPS 2017]

- There are many ways to get to the same result
- Don't forget, we optimize for accuracy, not interpretability!
- Can we use simpler primitives to ensure explainability?

EPFL Understanding landscape beauty (a quite subjective matter)

- Not all places are equally attractive
- Beauty is really subjective!
- However, there must be some kind of consensus

VS

EPFL Understanding landscape beauty (a quite subjective matter)

- Not all places are equally attractive
- Beauty is really subjective!
- However, there must be some kind of consensus
- Let's crowdsource that and understand factors related to beauty

EPFL Understanding landscape beauty (a quite subjective matter)

- Not all places are equally attractive
- Beauty is really subjective!
- However, there must be some kind of consensus
- Let's crowdsource that and understand factors related to beauty

Photos © <u>Sonse</u>, <u>Alex Healing</u>, <u>Tim Green</u>, <u>Jeremy</u> <u>Segrott</u> (<u>cc-by/2.0</u>).

EPFL What are we aiming at

We want to go beyond saliency. We want to predict what makes a landscape scenic.

EPFL Extracting interesting compositional factors

- Object and scene characteristics from social media
- Indicators from remote sensing
- Fuse with random forest

Ecosystem

type map

DEM

Historic

POI

_

5x5km

grid cell

19

Random

forest

Random

forest

▶ 6.8

(c) Combined

models

6.9

Campsite

Field

...

365 Places

scene classes

12345678910

image rating

6.7

distribution

Lagoon

Exercise

Swimmina

mean

Snow

Rusty

...

Places365 ResNet-50

SoN

ResNet

environmental

indicators

Naturalness

_

-

_

_

_

_

_

_

(a) Fl kr and de

102 SUN

attributes

(b) Environmental indicator model

Random

forest

I. Havinga, D. Marcos, P. Bogaart, L. Hein, and D. Tuia. Computer vision and social media data capture the aesthetic quality of the landscape for ecosystem service assessments. Scientific Reports, 2021. https://www.nature.com/articles/s41598-021-99282-0

EPFL Semantic bottleneck: explaining via learned semantic concepts

Paper. Marcos, Fong, Lobry, Flamary, Courty, Tuia, Contextual semantic interpretability, *ACCV 2020* <u>https://arxiv.org/abs/2009.08720</u>

D. Tuia

EPFL Understand: explainable AI for subjective problems (and not only)

 We can now interpret scenicness in *"easy-tounderstand and argue with"* terms

D. Marcos, S. Lobry, R. Fong, N. Courty, R. Flamary, and D. Tuia. Contextual semantic interpretability. In *Asian Conference on Computer Vision (ACCV)*, Kyoto, Kapan, 2020. <u>https://arxiv.org/abs/2009.08720</u>

EPFL Understand: explainable AI for subjective problems (and not only)

- We can study the same effects from satellite images
- And use land cover types as explanations
- For instance using Corine Land Cover
- Sentinel-2 images being available everywhere, we can scale findings!

A. Levering, D. Marcos, and D. Tuia. On the relation between landscape beauty and land cover: a case study in the U.K. at Sentinel-2 resolution with interpretable AI. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 177:194–203, 2021. <u>https://www.sciencedirect.com/science/article/pii/S0924271621001234</u>

24

EPFL Understand: explainable AI for subjective problems (and not only)

- We can study the same effects from satellite images
- And use land cover types as explanations
- For instance using Corine Land Cover
- Sentinel-2 images being available everywhere, we can scale findings!

A. Levering, D. Marcos, and D. Tuia. On the relation between landscape beauty and land cover: a case study in the U.K. at Sentinel-2 resolution with interpretable Al. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 177:194–203, 2021. <u>https://www.sciencedirect.com/science/article/pii/S0924271621001234</u>

EPFL Understand: explainable AI for subjective problems (and not only)

- We can study the same effects from satellite images
- And use land cover types as explanations
- For instance using Corine Land Cover
- Sentinel-2 images being available everywhere, we can scale findings!

A. Levering, D. Marcos, and D. Tuia. On the relation between landscape beauty and land cover: a case study in the U.K. at Sentinel-2 resolution with interpretable AI. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 177:194–203, 2021. <u>https://www.sciencedirect.com/science/article/pii/S0924271621001234</u>

EPFL Moving forward: textual, open set interpretations

P. Arendsen, D. Marcos, and D. Tuia. Concept discovery for the interpretation of landscape scenicness. *Mach. Learn. Knowledge Extraction*, 2(4):397–413, 2020. https://www.mdpi.com/2504-4990/2/4/22

Two (out of six) questions to move forward

Understand what is going on within CNNs

Make them accessible to anyone

Interaction, NLP

EPFLThis has greatpotential, but

- Non-experts are ... non technical experts.
- Non-experts want answers to specific questions.
- Non-experts want to formulate questions as sentences.

EPFL What do we need?

• For web-search it works a bit like that.

Advertising Business About How Search works

Privacy Terms Settings

Gmail Images Sign in

EPFL What do we need?

- For web-search it works a bit like that.
- With satellite images it just doesn't work (it's normal. It wasn't built for that)

EPFL Remote sensing visual question answering (RSVQA)

S. Lobry, D. Marcos, J. Murray, and **D. Tuia**. RSVQA: visual question answering for remote sensing data. *IEEE Trans. Geosci. Remote Sens.*, 58(12):8555–8566, 2020. https://arxiv.org/abs/2003.07333

EPFL Remote sensing visual question answering (RSVQA)

S. Lobry, D. Marcos, J. Murray, and **D. Tuia**. RSVQA: visual question answering for remote sensing data. *IEEE Trans. Geosci. Remote Sens.*, 58(12):8555–8566, 2020. https://arxiv.org/abs/2003.07333

How do we train a model like this?

We created two datasets:

- Sentinel-2 images (RGB) Entire Netherlands 9 scenes 772 image tiles 77'200 triplets

- Aerial images (15cm)

New York and Philadephia 11'000 tiles (6000 m² each) 1'110'000 triplets

EPFL Generating text inputs / outputs

We generated {image, question, answer} triplets with OSM

"How many roads are present in the image?"

"Is there more buildings at the top of a circular religious place than roads in the image?"

EPFL Generating text inputs / outputs

- We generated {image, question, answer} triplets
- We again use OSM

EPFL Results

79% overall accuracy73% if randomizing the image partCount questions less accurate

Туре	Accuracy
Count	67.01% (0.59%)
Presence	87.46% (0.06%)
Comparison	81.50% (0.03%)
Rural/Urban	90.00% (1.41%)
AA	81.49% (0.49%)
OA	79.08% (0.20%)

The model can make a good distinction between types of questions

Some results

EL I I

44

D. Tuia

EPFL Some results

Get data and codes!

https://rsvqa.sylvainlobry.com/

DATASI	EΤ

Very high resolution dataset	Low resolution dataset
10659	955664
Images	Questions

We have created a database using <u>USGS' high resolution (15.24cm) orthorectified images</u> and questions and answers derived from <u>OSM</u>. You can explore a subset of 50 images from this dataset here.

A CONTRACTOR OF A CONTRACTOR O Moving forward (actually, backwards): time Which buildings are new? mmm... let me check... ANTERS COMMENTED AND ANTER THE PERSON C. Chappuis PhD thesis, EPFL • e e sa Université de Paris

In summary

Earth observation and machine learning / computer vision are a match made in heaven.

There are many unsolved challenges for vision There is a lot of data out there

and waaaaaaaaay more importantly:

Making a difference with EO means making a difference for the future of our planet For our air, water, food, biodiversity.

EPFL Thanks!

devis.tuia@epfl.ch, eceo.epfl.ch, @devistuia

The book

EDITED BY GUSTAU CAMPS-VALLS • DEVIS TUIA XIAO XIANG ZHU • MARKUS REICHSTEIN

DEEP LEARNING FOR The **Earth Sciences**

A COMPREHENSIVE APPROACH TO REMOTE SENSING, CLIMATE SCIENCE AND GEOSCIENCES

The paper

arXiv.org > cs > arXiv:2104.05107 Computer Science > Computer Vision and Pattern Recognition

[Submitted on 11 Apr 2021] Towards a Collective Agenda on AI for Earth Science Data Analysis

Devis Tuia, Ribana Roscher, Jan Dirk Wegner, Nathan Jacobs, Xiao Xiang Zhu, Gustau Camps-Valls

In the last years we have witnessed the fields of geosciences and remote sensing and artificial intelligence to become closer. Thanks to both the massive availability of observational data, improved simulations, and algorithmic advances, these disciplines have found common objectives and challenges to advance the modeling and understanding of the Earth system. Despite such great opportunities, we also observed a worrying tendency to remain in disciplinancy confort zones applying recent advances from artificial intelligence on well resolved remote sensing problems. Here we take a position on research directions where we think the interface between these fields will have the most impact and become potential game changers. In our declared agenda for AI on Earth sciences, we aim to inspire researchers, especially the younger generations, to tackle these challenges for a real advance of remote sensing and the geosciences.

Comments: In press at IEEE Geoscience and Remote Sensing Magazine Subjects: Computer Vision and Pattern Recognition (cs.CV); Signal Processing (eess.SP)

DOI: 10.1109/MGRS.2020.3043504

Cite as: arXiv:2104.05107 [cs.CV]

(or arXiv:2104.05107v1 [cs.CV] for this version)

The network

e 1 1 **i** s

European Laboratory for Learning and Intelligent Systems Program "ML for Earth and Climate Science"