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Challenge of using observations
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Physical forecast models in a data assimilation framework
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Train a new cloud model inside a data assimilation system?
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Data assimilation
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Data assimilation: importance of the model
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Cost function for variational DA 
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Cost / loss function equivalence of ML and variational DA
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Machine learning (e.g. NN)                        Variational data assimilation
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Equivalence of ML and DA
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• Hsieh and Tang (1998) https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2

• Abarbanel et al. (2018) https://doi.org/10.1162/neco_a_01094

• Bocquet et al. (2020) https://arxiv.org/abs/2001.06270

• Geer (2021) https://doi.org/10.21957/7fyj2811r

• Bayesian basis of ML: Goodfellow et al. (2016) https://www.deeplearningbook.org

• ML – DA merger: see Rosella Arcucci’s talk this workshop

As a Bayesian network

𝑦 = ℎ(𝑥, 𝑤)

https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2
https://doi.org/10.1162/neco_a_01094
https://arxiv.org/abs/2001.06270
https://doi.org/10.21957/7fyj2811r
https://www.deeplearningbook.org/
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Data assimilation – ignoring the complexity of observations
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Data assimilation ↔ dynamical systems, recurrent neural networks, etc.
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How can machine learning help? No need for a physical model?
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Techniques applied to generally simpler dynamical systems

E.g. recurrent neural networks (RNN, e.g. echo state networks, reservoir 

computing – e.g. Pathak et al., 2018, https:/doi.org/10.1103/PhysRevLett.120.024102), 



Low-resolution data-driven weather forecasting: Weatherbench challenge
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E.g. U-Net convolutional neural networks CNNs - Weyn et al. 

(2020, https:// doi.org/10.1029/2020MS002109)

E.g. resnet approach – Rasp and Thuerey (2021, 

https://doi. org/10.1029/2020MS002405)



Combine physical and empirical models: Physically constrained ML
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https://github.com/maziarraissi/PINNs
Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep 

Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations." 

arXiv preprint arXiv:1711.10561 (2017)

Custom loss function

Neural network

Burger’s equation
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝜐

𝜕2𝑢

𝜕𝑥2
= 0

Gradients of the network

https://arxiv.org/abs/1711.10561


Combine physical and empirical models: semi-physical components in 
empirical models

• E.g. spatial transformers used in U-Net in 

Weatherbench framework (Chattopadhyay et al. , 2021, 

GMDD, https://doi.org/10.5194/gmd-2021-71)

– Apply a transformation matrix and an interpolation that 

allows e.g. rotation and scaling (of latent space) 

– Original work on spatial transformers in image 

processing, e.g. character recognition (Jaderberg et al., 

2015, https://arxiv.org/abs/1506.02025)

– See also fluid dynamics example: Wang et al. (2021, 

Incorporating symmetry into deep dynamics models for 

improved generalization, 

https://arxiv.org/abs/2002.03061)
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Combine physical and empirical models: error correction
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Combine physical and empirical models: error correction
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• Simpler models: e.g. Lorenz ’63, ’96, QG:

• Pathak et al. (2018, https://doi.org/10.1063/1.5028373)

• Use iterative cycles of data assimilation followed by 

neural network training (Brajard et al., 2020, 

https://doi.org/10.1016/j.jocs.2020.101171)

• Applied to an operational NWP model:

Bonavita and Laloyaux, 2020, https://doi.org/10.1029/2020MS002232

• See talks by Alban Farchi and Marcin Chrust at this 

workshop

https://doi.org/10.1016/j.jocs.2020.101171


Combine physical and empirical models: parameter estimation

• Parameter estimation in data assimilation

– E.g. Kotsuki et al. (2020, 

https://doi.org/10.1029/2019JD031304)  

estimation of autoconversion parameter in 

atmospheric GCM 

– E.g. Tijana Janjic presentation in this workshop
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https://doi.org/10.1029/2019JD031304


Using ML to extend data assimilation capabilities

• In variational data assimilation:

– Use machine learning emulators as an alternative numerical differentiation 

method to create tangent-linear (TL) and adjoint (AD) operators

• e.g. Hatfield et al., 2021, https://doi.org/10.1029/2021MS002521, emulate a gravity 

wave drag scheme for use in TL and AD only

• In ensemble data assimilation

– Use machine learning emulators to generate very large ensembles

• E.g. Chattopadhyay et al. , 2021, GMDD, https://doi.org/10.5194/gmd-2021-71, 

generate a 1000-member ensemble

• Data assimilation in the latent space of an encoder-decoder

– E.g. Amendola et al., 2020, Data assimilation in the latent space of a neural 

network, https://arxiv.org/abs/2012.12056

– E.g. Peyron et al., 2021, Latent space data assimilation by using deep learning 

https://arxiv.org/abs/2104.00430

– See talks by Rosella Arcucci and Sibo Cheng, this workshop
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https://doi.org/10.1029/2021MS002521
https://doi.org/10.5194/gmd-2021-71
https://arxiv.org/abs/2104.00430


Latent space of the neural network – e.g. encoder - decoder
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Data assimilation: now focusing on observations and 
geophysical variables
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How can machine learning help? No physical model available
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x

h(x,w)

y

Well-constrained model 

variables from the DA system

Observations

Train a neural network observation 

operator (w = weights) where a 

physical model is not available

• See Sean Healy’s talk this workshop: a neural network scatterometer observation operator

• Example (in inverse direction) operationally used at ECMWF for soil moisture assimilatiuon 

from SMOS: Rodriguez-Fernandez et al., 2019, "SMOS Neural Network Soil Moisture Data Assimilation in a Land 

Surface Model and Atmospheric Impact", https://www.mdpi.com/2072-4292/11/11/1334

E.g. ocean surface wind speed 

E.g. backscatter triplet from scatterometer

https://www.mdpi.com/2072-4292/11/11/1334


Machine learning within existing physical observation operators
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x
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Example: MFASIS cloudy visible reflectance observation 

operator within RTTOV radiative transfer model

• Scheck (2021, https://doi.org/10.1016/j.jqsrt.2021.107841)

• Replace 8 GB lookup table with 20 KB neural network

• Neural network gives much smoother gradients than 

the lookup table

Existing physical-

empirical model

https://doi.org/10.1016/j.jqsrt.2021.107841


What about poorly-known or unknown geophysical variables?
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Observation operator for microwave 
land surface radiative transfer
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AMSR2 24GHz v-pol observations

10 possible predictors for the 

brightness temperature

Skin temperature

Soil moisture

Leaf area index

+ orography, snow depth, 

snow density, integrated 

water vapour, cloud, rain 

and snow water contents

Labels Features

See also talks by Filipe Aires and 

Eulalie Boucher in this workshop



Results (ability to fit training dataset) 
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The inputs do not contain enough information to drive outputs
(in this case, no detailed knowledge of snow and ice microstructure)



What about poorly-known or unknown geophysical variables?
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Machine learning for 
sea-ice emissivity: 
autoencoder approach
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Generative learning: Generative-adversarial network (GAN) for snowflake pictures 
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• Leinonen and Berne (2020, Unsupervised classification of snowflake images using a generative adversarial network… , 

https://doi.org/10.5194/amt-13-2949-2020)

• Leinonen et al. (2021, Reconstruction of the mass and geometry of snowfall particles … , https://doi.org/10.5194/amt-14-6851-2021)

• See also Jussi Leinonen’s talk this workshop (different work)

Real snowflake 

image

Reconstruction 

from latent space

https://doi.org/10.5194/amt-13-2949-2020


Some current challenges or hopes

• Train a neural network online within an operational-scale data assimilation system 

– E.g. Fortran-Keras bridge (e.g. Ott, 2020, https://doi.org/10.1155/2020/8888811)

• Very large-scale neural networks in the earth sciences

– Take full advantage of cloud computing and supercomputing platforms

– Compare to e.g. GPT-3 AI - 1.75 x10^11 parameters (https://arxiv.org/abs/2005.14165)

– E.g. ECMWF operational weather model state vector 10^10 variables 

• Learn an empirical model directly from observations that supersedes existing 

physical models

• Infer almost completely unknown variables, lacking reliable physical models or 

extensive observations to constrain them

– Generative ML models, AI for physics discovery?

– Data assimilation (impose physical models and observational constraints)?
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https://arxiv.org/abs/2005.14165

