

Benefits and Opportunities of Explainable Machine Learning in the Environmental Sciences

Ribana Roscher AI4E0 Future Lab, Technical University of Munich

ESA UNCLASSIFIED – For ESA Official Use Only

THE EUROPEAN SPACE AGENCY

•

🔹 🔹 🔸 💥 👘 📥 💠 The European Sp

= II 🛌 ## ## #II 🗯 🚝 II II == == ## 🛶 🚺 II == ## ## ##

Deep neural networks are the prime example for black box behavior.

- > Transparancy
- > Interpretability
- Explainability

= II 🛌 :: = + II = 😇 = II II = = :: := 🖬 🖬 II = :: II 💥 = :=

•

Transparancy

Transparency of a machine learning approach concerns its different ingredients, including

- overall model structure
- individual model components
- learning algorithm
- how the specific solution is obtained by the algorithm

Interpretability and explainability

Interpretability

- Present some properties of a machine learning model (model structure, training data, learning procedure, ...) in **understandable terms** to a human
- Can be obtained, for example, by visualizing relevant patterns or understandable proxy models

Explainability

- Combine interpretable entities with **domain knowledge** (and analysis goal)
- Adadi & Berrada (2018) provide four reasons to seek explanations: to justify decisions, to (enhance) control, to improve models, and to discover new knowledge

Why do we distinguish?

Explanation changes with application domain

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). *IEEE Access*, 6, 52138-52160. Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explainable machine learning for scientific insights and discoveries. *IEEE Access*, 8, 42200-42216.

Approaches

Explaining output by the input

Explaining the model (parts)

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ ■ = = = ₩ → ◙ ■ = = ₩ ₩ = ₩ = ₩

Can explainable machine learning by useful in remote sensing?

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explain it to Me-Facing Remote Sensing Challenges in the-and Geosciences with Explainable Machine Learning. *ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences*, *5*, 817-824.

Can explainable machine learning by useful in remote sensing?

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explain it to Me-Facing Remote Sensing Challenges in the-and Geosciences with Explainable Machine Learning. *ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences*, *5*, 817-824.

Can explainable machine learning by useful in remote sensing?

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explain it to Me-Facing Remote Sensing Challenges in the-and Geosciences with Explainable Machine Learning. *ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences*, *5*, 817-824.

+ THE EUROPEAN SPACE AGENCY

Can explainable machine learning by useful in remote sensing?

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). Explain it to Me-Facing Remote Sensing Challenges in the-and Geosciences with Explainable Machine Learning. *ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences*, *5*, 817-824.

What makes nature wild?

No existing definition which can be used for machine learning

>Use explainable ML to **discover concepts** for wilderness and deepen our understanding about the land cover class so that it is useful for mapping

What makes nature wild?

What makes nature wild?

World Database on Protected Areas (WDPA)

- category la: strict nature reserve
- category lb: wilderness areas

"Protected areas that are usually large unmodified or slightly modified areas, retaining their natural character [...], without [...] significant human habitation, which are protected and managed so as to preserve their natural condition."

• category II: national park

Assumption

• protected areas (WDPA) can be associated with wilderness

definition held by the International Union for Conservation of Nature and Natural Resources (IUCN) https://www.iucn.org/theme/protected-areas/about/protected-area-categories/category-ib-wilderness-area

Conceptual framework

Stomberg, T., Weber, I., Schmitt, M., & Roscher, R. (2021). jUngle-Net: Using explainable machine learning to gain new insights into the appearance of wilderness in satellite imagery. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, *3*, 317-324.

jUngle-Net

input → U-net → activation map → CNN+FCN → output

Activation space

__ II 🛌 :: 🖛 + II 🚍 🚝 __ II II __ __ :: :: :: :: II 🖬 🗖 👯 🚍 :::

÷

Sensitivity analysis

Sensitivity analysis

Results: streets

Results: anthropogenic regions

Results: specific regions

· _ FI 🛌 ## -+ FI 💻 🚝 🚍 FI FI 🚍 🚍 ## M FI 🚍 ## M FI 🚍 ## H 💥 🚍 🕍 |*|

Findings

- jUngle-Net allows to find sensitive concepts and helps to better understand wilderness from a technical point of view
- Domain knowledge necessary (ongoing collaboration with Institute of Science and Ethics, University of Bonn)
- Iterative process necessary to guide the method to improve findings

Conclusion

- Seeking interpretations and explanations is nothing new, it got more attention with the rise of deep neural networks
- Interpretations can lead to wrong or insufficient explanations be aware of confirmation bias
- Explainable machine learning can tackle challenges in remote sensing by going beyond accuracy maximization
 - Helps to formulate hypotheses
 - Discover new knowledge and insights

· = ■ ► = = + ■ = = = = ■ = = = = = ■ ■ ■ ■ = = = ₩ = ■