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 Wrap up
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The Machine Learning Context
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Machine Learning

Supervised:
● Classification
● Regression
● ...

Unsupervised:
● Clustering
● Dim. reduction
● ...
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The Geo-Science Context

e.g. Earth Observation using MWI radiometers and Optimal Estimation: 
SIC, NS Wind speed, SST, etc.

Multidimensional 
datasets:
● Observations 
● Apriori data

Forward model:
● Physics based
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Time series

Masking & Missing data

The Geo-Science Context

e.g. Earth Observation using MWI radiometers and Optimal Estimation: 
SIC, NS Wind speed, SST, etc.

Multidimensional 
datasets:
● Observations 
● Apriori data

Forward model:
● Physics based

Split-Apply-Combine Model specific
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● CRTM
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Open Source / Community Development

Pangeo

DASK

● Pyresample

● Satpy

● Many more...

And more...
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A research workflow [5] 
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● 80 / 90 % of the time is spent in ETL, the rest is actual data analysis / 
use

● Open source / Community development provides “key improvements to 
our ability to share, reproduce and scale ML workflows in geosciences.”

ETL



How?

Geo

Python ecosystem

Physics
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ML Sup. ML Unsup.

RTTOV 
(Python 

Wrapper)



PyOpEst: Python Optimal Estimation 

 Open source tool developed by M. Maahn, [1]

 Object oriented, based on Pandas data structures

 Originally developed in the context of ground based 
radiometers

 Now used in the context of onboard radiometers:
➢ We have improved the speed of the Jacobians computation 
➢ We have expanded its scope by allowing the use of an external tool to 

compute Jacobians.
➢ An open source example of PyOpEst + RTTOV (Python’s wrapper for it) is 

now available: https://github.com/deweatherman/RadEst
➢ Plug and play tool
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https://github.com/deweatherman/RadEst


Our working example: K-Fold Cross 
validation
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Test

Train: 
a-priori

* By Gufosowa - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=82298768

*



Our working example: K-Fold Cross 
validation

From [3]

From [4]
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Our working example: K-Fold Cross 
validation 
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Our working example: K-Fold Cross 
validation 
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 Forward model (oversimplified!)

Top of the Atmosphere: TOA

Surface of the ocean

Observations: 
Brightness 

temperature (TB)

Surface unknowns: 
Wind speed at 10m 

height

A forward model connects 
the unknowns with the 

observations:

TB = F(f ,θ , b, atm , NSWS)
...

atm: Temp., 
Hum., Press., 
etc.

*From: https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics
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NSWS: Near Surface
Wind Speed
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https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics


Our working example: K-Fold Cross 
validation 
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Our working example: K-Fold Cross 
validation 
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A-priori data: “Diverse profile datasets from the ECMWF-137-level 
short-range forecasts”  

Black line: mean
Gray: min/max
Orange: 10th-90th 
percentiles
Red: 25th-75th 
percentiles

22
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Our working example: K-Fold Cross 
validation 
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Our working example: K-Fold Cross 
validation 
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Testing with synthetic data: some inputs

Locations for 
synthetic 
experiment:
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Our working example: K-Fold Cross 
validation 
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SSMIS F16:
slope mean 0.878, std 0.006

MAM

DJF

JJA
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So?

 What can we do?
➢ e.g. Sandbox for hyperparameters tunning: 

● RTTOV parameters
● Constraining variables
● Channels

➢ e.g. Platform for prototyping and 
communication:
● Scripting like environment (Jupyter) offers a lot 

of flexibility
● Deployment (via Conda environments for 

example)
● Python’s prevalence and support  

➢ Open Source & Community development
● Code available: check it, propose & improve:

https://github.com/deweatherman/RadEst

RTTOV/FASTEM bug detected!
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https://github.com/deweatherman/RadEst
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References

ML and Geo packages:

ML:
• https://pypi.org/project/scikit-learn/
• https://pypi.org/project/keras/
• https://pypi.org/project/tensorflow/
• https://pypi.org/project/opencv-python/
• https://pypi.org/project/matplotlib/

Geo:
• https://pangeo.io/
• https://pytroll.github.io/
• https://www.scipy.org/
• https://pypi.org/project/Cartopy/

Optimal Estimation:
• https://github.com/maahn/pyOptimalEstimation
• https://github.com/deweatherman/RadEst
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 Thanks!
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Support slides
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Exploratory Data Analysis and Visualization : ERA5 data
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* https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, 
https://doi.org/10.24381/cds.adbb2d47

DASK

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://doi.org/10.24381/cds.adbb2d47


Exploratory Data Analysis and Visualization : ERA5 data

DASK

* https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, 
https://doi.org/10.24381/cds.adbb2d47 34
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DJF JJA MAM

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://doi.org/10.24381/cds.adbb2d47
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