

Permutation invariance and uncertainty in multitemporal image super-resolution

Diego Valsesia, Enrico Magli Politecnico di Torino

MULTI-IMAGE SUPER-RESOLUTION

- Multiple images of a scene (temporal series):
 - SR is possible thanks to sub-pixel misregistration
- Tremendous research interest since the ESA Proba-V challenge
- DeepSUM [1]: dynamic registration filters
- HighRes-Net [2]: recursive fusion
- RAMS [3]: feature attention
- Burst computational photography [4]



- [1] Molini, Valsesia, Fracastoro, Magli, "Deep SUM: Deep neural network for Super-resolution of Unregistered Multitemporal images", IEEE TGRS 2020
- [2] Arefin et al. "Multi-Image Super-Resolution for Remote Sensing using Deep Recurrent Networks", CVPRW 2020
- [3] Salvetti, Mazzia, Khaliq, Chiaberge, "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", MDPI Remote Sensing 2020
- [4] Bhat, Danelljan, Van Gool, Timofte, "Deep burst super-resolution", CVPR 2021

A NEGLEGTED ISSUE...

• All state-of-the-art methods neglect an important issue:

The temporal ordering of the LR images does not matter

- Full Invariance to temporal permutation is needed
- Building a model that is invariant allows for richer representations
 - no parameters are wasted learning correlation patterns exploiting ordering

INVARIANCE AND EQUIVARIANCE

Invariance

$$f(g \circ x) = f(x)$$

(output does not change when input is permuted)

• Equivariance

$$f(g \circ x) = g \circ f(x)$$

(output has the same permutation as input)

EXAMPLE: CONV2D IS NOT INVARIANT

- Example: stack the temporal images as channels
 - (B, Nx, Ny, T)
- Using conv2D to process the tensor is NOT invariant to temporal permutation

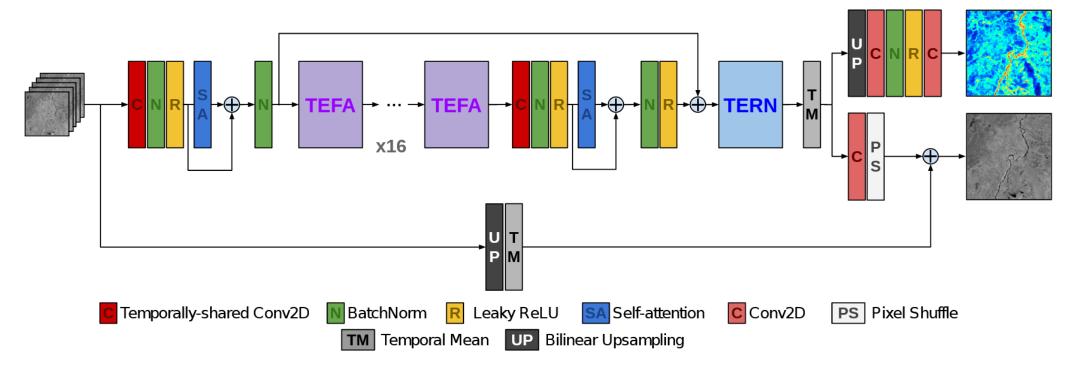
$$h^{before} = w_1 x_1 + w_2 x_2 + \dots + w_T x_T$$

$$h^{after} = w_1 x_3 + w_2 x_1 + \dots + w_T x_5$$

HOW DO YOU BUILD AN INVARIANT MODEL?

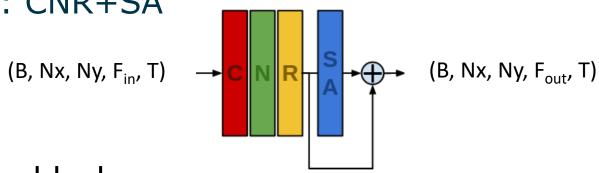
- Step 1: build a neural network with only equivariant layers
 - If temporal ordering is permuted, all feature maps are exactly the same but also permuted
- Step 2: place an aggregation operation that is invariant to permutation (e.g. temporal average)

PIUnet MODEL



- Inspired by SoTA architectures using attention
- Backbone is redesigned to only use equivariant layers
- Temporal Mean is used to transform equivariance into invariance

BUILDING BLOCKS: CNR+SA



- CNR-SA building block:
 - C: spatial convolution, shared across time
 - N: batch normalization
 - R: leaky ReLU
 - SA: residual temporal self-attention

Mix space Equivariant to temporal permutation!

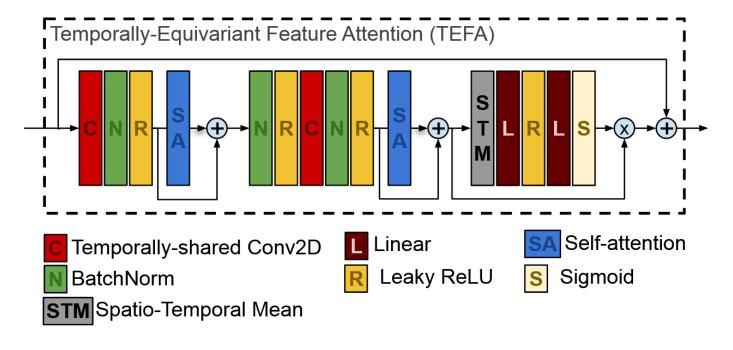
Mix time

$$\mathbf{Q} = \mathbf{X}\mathbf{W}_q, \quad \mathbf{K} = \mathbf{X}\mathbf{W}_k, \quad \mathbf{V} = \mathbf{X}\mathbf{W}_v$$

$$\mathbf{Y} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\intercal}}{\sqrt{T}}\right) \cdot \mathbf{V} = \mathbf{A}\mathbf{V}$$

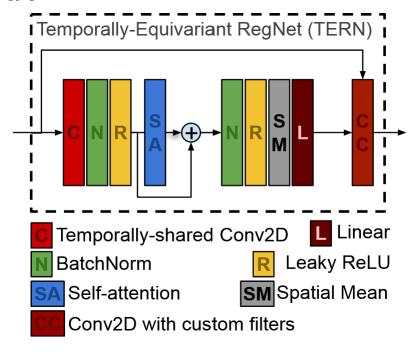
Equivariant to temporal permutation!

BUILDING BLOCKS: TEFA



- **TEFA**: Temporally-Equivariant Feature Attention
 - Use attention mechanism to extract space-time features
 - Made equivariant by CNR-SA
 - Backbone of the model (16 TEFA blocks)

BUILDING BLOCKS: TERN



- TERN: Temporally-Equivariant Registration Network
 - Expanded from DeepSUM and made equivariant
 - Dynamically compute and apply filters to finetune pixel registration
 - Network computes a filter kernel as function of input and then applies it to input (adaptive filter)

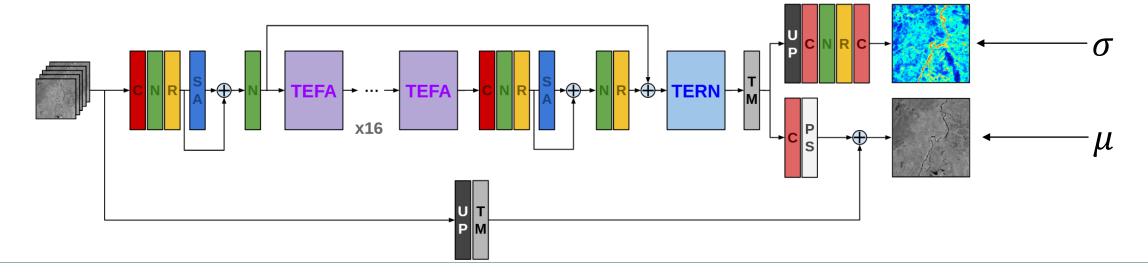
UNCERTAINTY ESTIMATION

- Explainable AI:
 - It is important to understand what the model is doing and how reliable is the output

Can I trust the super-resolved image when an area had a lot of temporal variation?

UNCERTAINTY ESTIMATION

- We want to estimate the aleatoric uncertainty of the SR image
- This uncertainty is due to the quality of the input data:
 - temporal variation increases uncertainty
- Model output is not just the SR pixel but the SR pixel distribution
 - Two heads: mean value, standard deviation



SR PIXEL MODEL & TRAINING

We choose the SR pixel to have a Laplace distribution

$$p(x_i) = \frac{1}{2\beta_i} \exp\left(-\frac{|x_i - \mu_i|}{\beta_i}\right)$$

• Training minimizes the negative log likelihood

$$L = -\frac{1}{NB} \sum_{b,i} \log p(x_i)$$

$$= \frac{1}{NB} \sum_{b} \left[\sum_{i} \left(\delta_i^{(b)} + e^{-\delta_i^{(b)}} |x_i^{\text{HR}(b)} - \mu_i^{(b)}| \right) \right]$$

This is similar to the L1 loss but weighted by the uncertainty!

 $(\delta = \log \beta)$ is used for numerical stability)

EXPERIMENTAL RESULTS

- Proba-V dataset (T=9)
- Note: (ens.) methods use temporal self-ensembling

TABLE I: Quantitative performance - cPSNR (dB) and cSSIM

	Bicubic	IBP [17]	BTV [22]	DUF [27]	HighResNet	DeepSUM (ens.) [29]	DeepSUM++ (ens.) [30]	RAMS [32]	RAMS [32] (ens.)	PIUnet
NIR cPSNR	45.44	45.96	45.93	47.06	47.55	47.84	47.93	48.23	48.51	48.72
NIR cSSIM	0.9771	0.9778	0.9794	0.9842	0.9855	0.9858	0.9862	0.9875	0.9880	0.9883
RED cPSNR	47.34	48.21	48.12	49.36	49.75	50.00	50.08	50.17	50.44	50.62
RED cSSIM	0.9840	0.9865	0.9861	0.9842	0.9904	0.9908	0.9912	0.9913	0.9917	0.9921

PIUnet beats SoTA and also beats self-ensembling

SELF-ENSEMBLING IS EXPENSIVE

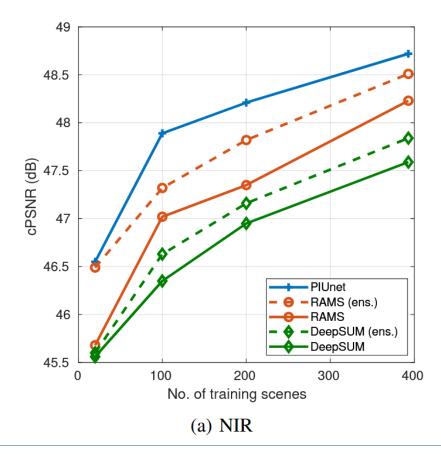
- Averaging the results of multiple permutations is expensive
- PIUnet does **not** do that (you always get the same result for every permutation)
 - You are capturing the richness of the self-ensemble directly in the model

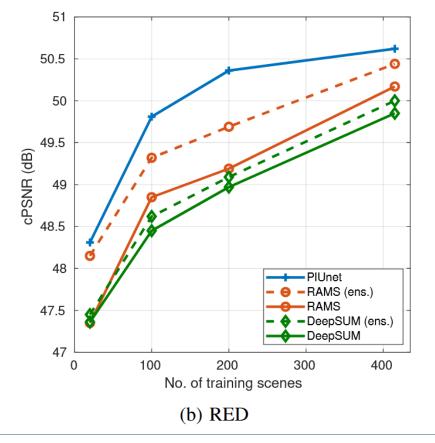
TABLE III: Computational complexity

	runtime	memory
DeepSUM	484 ms	5420 MB
RAMS	102 ms	1250 MB
RAMS (ens.)	1642 ms / 1075 ms	1250 MB / 5340 MB
PIUnet	181 ms	1280 MB

IMPROVED DATA EFFICIENCY

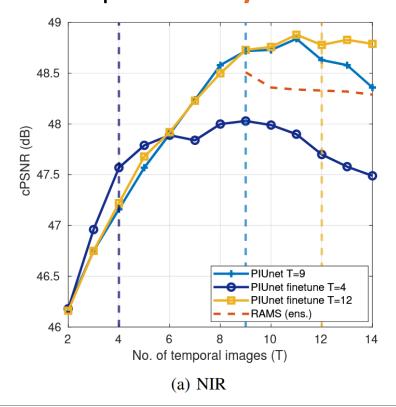
- We do not waste training data to learn operations depending on temporal ordering
 - Increased data efficiency → DeepSUM performance with just 25% of the data!

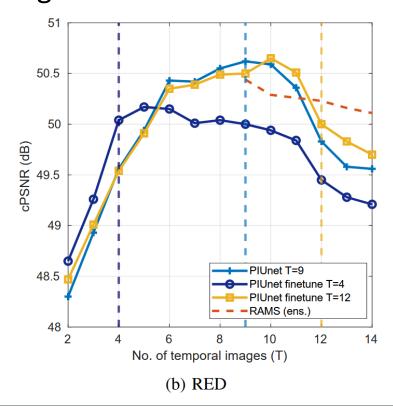




PROCESS ANY NUMBER OF LR IMAGES

- Most models are rigid: you can only use a fixed number of images
 - This is hard-coded in how the architecture is made (strided convs, etc.)
- PlUnet can process any number of LR images





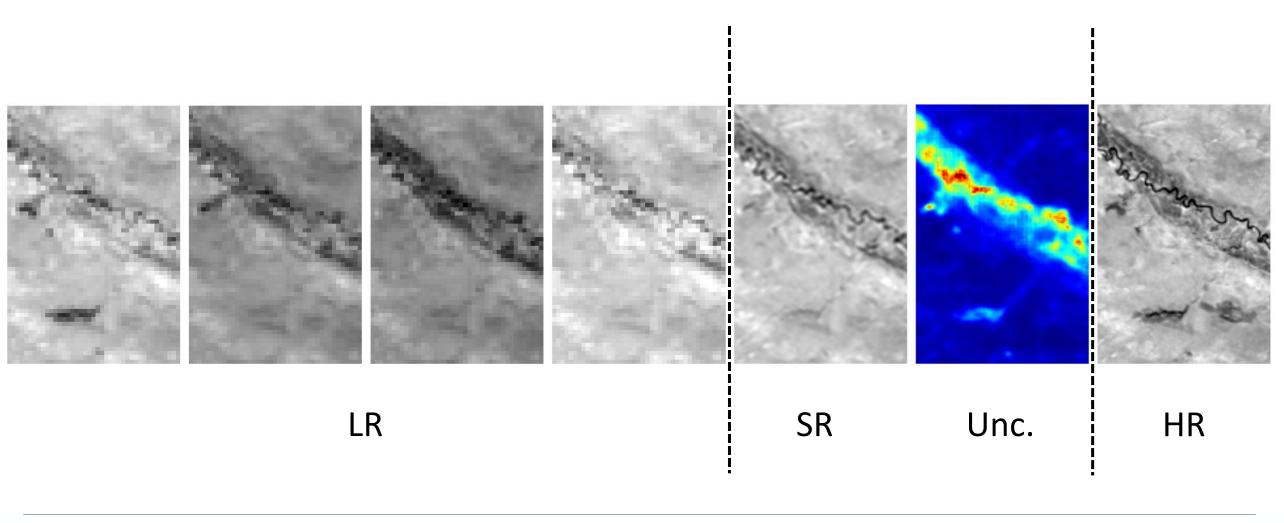
UNCERTAINTY ALSO BOOSTS PERFORMANCE

- Estimating uncertainty provides useful explainability...
- ...but also increases model performance!
- Uncertainty regularizes overconfident predictions

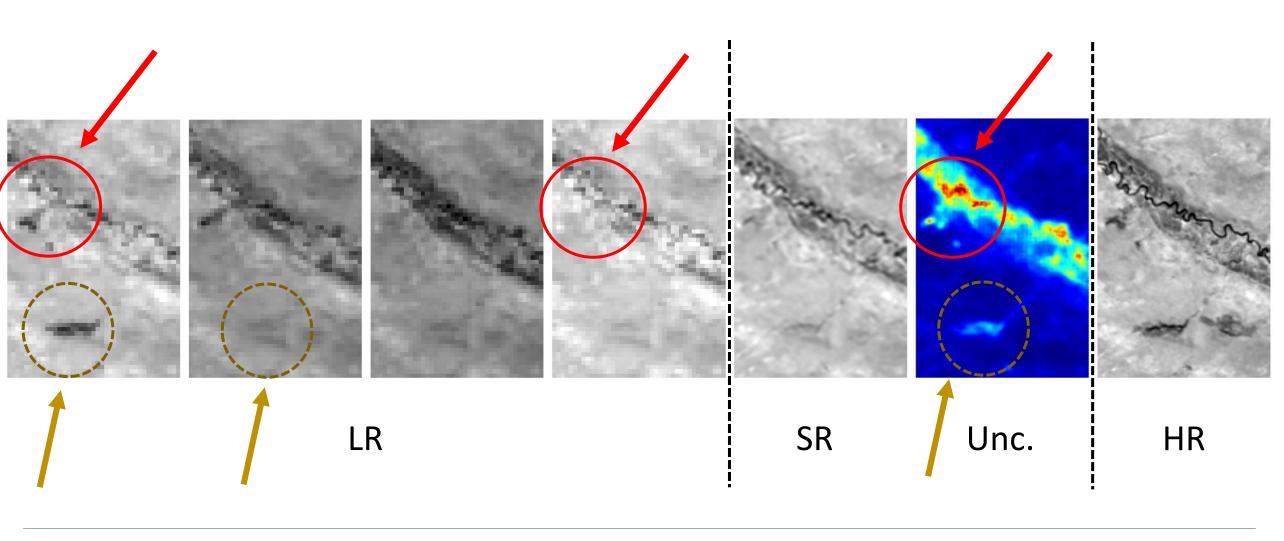
TABLE IV: Training loss comparison (cPSNR)

	L1 loss	NLL loss
NIR	48.41 dB	48.72 dB
RED	50.53 dB	50.62 dB

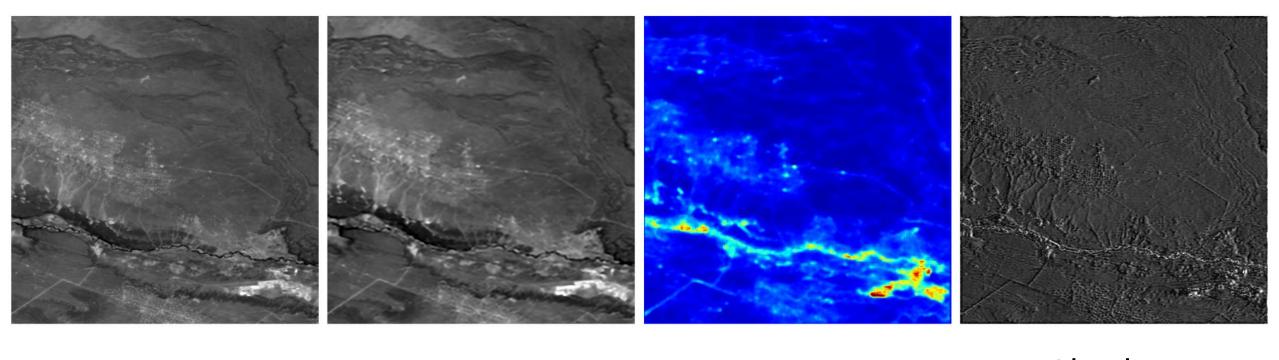
UNCERTAINTY MAP CORRELATES WITH TEMPORAL VARIATION



UNCERTAINTY MAP CORRELATES WITH TEMPORAL VARIATION



UNCERTAINTY MAP CORRELATES WITH TRUE ERROR



HR

SR

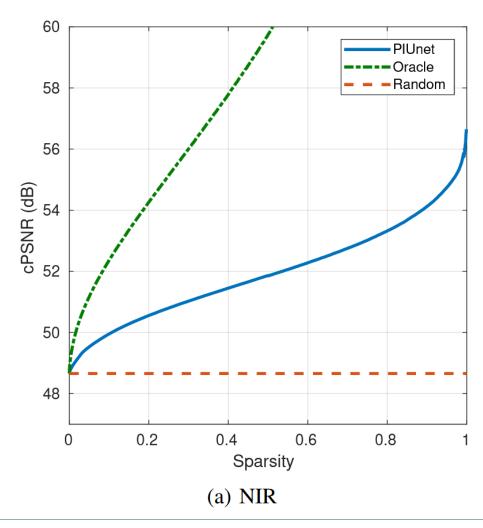
Unc.

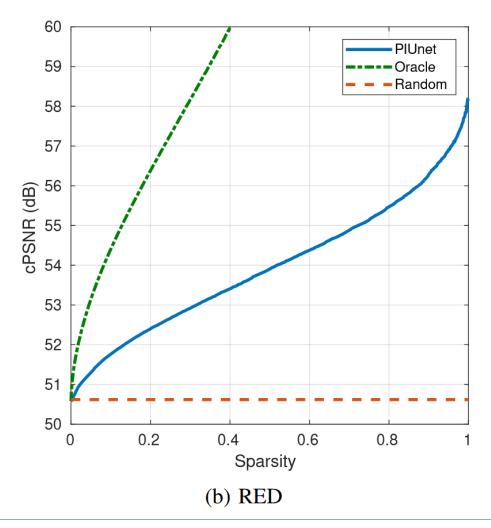
Absolute error

UNCERTAINTY MAP CORRELATES WITH TRUE ERROR

- How do you quantitatively check if uncertainty estimation is good?
- Sparsification curve:
 - Sort pixels by decreasing uncertainty
 - Remove one pixel at a time
 - If uncertainty correlates with error, PSNR of surviving pixels increases
- Compare methods of uncertainty estimation by comparing sparsification curves

UNCERTAINTY MAP CORRELATES WITH TRUE ERROR





CONTACTS

diego.valsesia@polito.it

github.com/diegovalsesia

www.ipl.polito.it

@IPLPolito

Discover more about super-resolution, permutation invariance and SR uncertainty estimation:

https://arxiv.org/abs/2105.12409

Valsesia, Magli, «Permutation invariance and uncertainty in multitemporal image super-resolution»

Code (soon): https://github.com/diegovalsesia/piunet

