

CNN-based Detection of Tiny Objects in Remote Areas Using Spatiotemporal Earth Observation Dataman Pflugfelder (1), Axel Weissenfeld (2) (1) TU Wien, (2) AIT Austrian Institute of Technology

ESA UNCLASSIFIED – For ESA Official Use Only

Task challenge: Moving vehicle detection in remote sensing

© 2020 Planet Labs Inc. All Rights Reserved.

__ II 🛌 == + II 💻 🚝 🚝 II II = __ = # 🖬 🛶 🔯 II 💻 == # 🖽 💥 🚍 🖮 া

Prominent approaches for object detection

- Faster R-CNN (S. Ren et al., NeurIPS'15)
- Mask R-CNN (see illustration) (K. He, ICCV'17)
- SSD Single Shot Detector (W. Liu et al., ECCV'16)
- Yolo V.3 (J. Redmon, A. Farhadi, CoRR'18)

- Vehicle detection in remote sensing imagery is challenging as vehicles appear tiny (four to ten pixels) in very large images
- Standard object detections fail...

__ II 🛌 :: 🖛 + II 💻 🔚 __ II II = __ II 📾 🛶 🔯 II __ II 🗮 😹 🖕 📦

Challenge: Typical object detection datasets

Spatiotemporal Earth Observation Data

multispectral imaging GSD ~ 0,30m

asynchronous stereo images (WorldView-3)

https://www.satimagingcorp.com/satellit e-sensors/worldview-3/

© 2020 Planet Labs Inc. All Rights Reserved.

all-frames product

https://assets.planet.com/docs/Pl anet_Basic_L1A_All-Frames_User_Guide.pdf satellite video GSD ~ 0,70m

Increasing tempoal sammpling

Las Vegas Video - courtesy of Planet Inc. (100cm GSD)

= II 🛌 :: — + II = 🔚 = 2 II II = = 2 :: H 🛶 🔯 II = 2 :: H 💥 😑 🖕 IV

Recurrent Networks

- We propose a fully **spatiotemporal convolutional neural network** (CNN) to detect moving vehicles in satellite videos.
- Inspired by the work of Lalonde et al. [1] vehicle detection with aerial WAMI data
- Input to spatio-temporal CNNs are a sequence of images. In this way, these CNNs can take advantage of local spatio-temporal information [2]

• Our approach consists of a pre-processing step and the object detection.

[1] LaLonde, Rodney, Dong Zhang, and Mubarak Shah. "Clusternet: Detecting small objects in large scenes by exploiting spatio-temporal information." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

[2] Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural networks." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2014.

Pre-processing: Frame registration pipeline

__ II 🛌 :: 🖛 + II 🚍 🚝 __ II II = __ :: 📰 🛶 🔕 II __ :: EI 💥 🚍 🛀 IV

Prediction

The object detection process consists of two steps:

- The FoveaNet4Sat predicts a heatmap, which indicates the likelihood that an object is at a given image coordinate.
- A post-processing steps derives the object locations by detecting all responses whose value is greater or equal to its 8-connected neighbors followed by a non-maximum suppression.

= II 🛌 == + II == 🔚 == II II = = = = 📰 🖬 II == = II 🚟 🛏 🕪

Network Training

- Output: Heatmap *H*
- Pixel Position x, y in H
- Variance σ of Gaussian
- Loss Function- Euclidian distance in the heatmap for training and Adam as optimizer
- Transfer Learning
 - trained on down sampled aerial WAMI (WPAFB'09 dataset), which contains over 160,000 annotated moving vehicles
 - fine-tuned on satellite video

$$H(x,y) = \sum_{n=1}^{N} \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

= 88 🛌 == + 88 🚍 🔚 == 2 88 88 == 2 # == 88 88 **58 == 1** # # # #

Experimental Setup

- Choose AOIs used for training (green) and evaluation (blue)
- Split data two AOIs for training, one for validation
- Precision, recall, F1 measures

= || |= == + || == == = || || || == == #= == || || || == #= |||

Results for Tiny Vehicles

- Foveanet on Khartoum Video (Planet Inc.)
- 12,087 Training Samples, 3,436 Test Samples

= || |= :: = + || = := := || || || = := := !! = !! || || = := !! ||

A closer look

- Colour Coding (Green = True Positive; Blue = False Positive; Red = False Negative)
- Khartoum

Ĉ)	2020	Planet I	Labs İ	Inc.	All	Ria	hts	Reser	ved
						<u> </u>			

Measures	Khartoum	Agadez	
Precision	0,92	0,96	
Recall	0,81	0,70	
F1	0,86	0,81	
Training Exempels	12,087	9,144	
Test Exempels	3,436 (1/4)	2,291 (1/4)	

Importance of motion

• Recall-Precision curve of Foveanet on Khartoum Video

© 2020 Planet Labs Inc. All Rights Reserved.

Las Vegas Video

• Quantitative study and comparison to other methods

Methods	Prec.	Recall	F1
ViBe	0.58	0.17	0.26
GMMv2	0.65	0.27	0.38
GMM	0.46	0.5	0.48
F-RCNN-LPR	0.58	0.44	0.5
GoDec	0.95	0.36	0.52
RPCA-PCP	0.94	0.41	0.57
Decolor	0.77	0.59	0.67
LSD	0.87	0.71	0.78
E-LSD	0.85	0.79	0.82
FoveaNet	0.86	0.82	0.84
FoveaNet4Sat	0.85	0.92	0.88

Ground truth provided by Junpeng Zhang et al. "Error bounded foreground and background modeling for moving object detection in satellite videos". In: TGARS. 58.4. 2019.

= II 🛌 == + II == 🔚 == 1 II II == == 🐏 🛶 🔯 II == == 👀 💥 📰 🗮

Conclusions

- Spatiotemporal convolutional neural network (CNN) very suitable for detecting tiny moving objects and very good results are achieved
- Foveanet4Sat yields 0.88 F1 comparable to E-LSD (J. Zhang, X. Jia, J. Hu, TGARS'19) 0.82 F1 on Las Vegas
 - F1 of 0.86 in Khartoum
 - F1 of 0.81 in Agadez
- Challenge: Lack of public datasets to enhance SOTA

Future work:

Sparsity of vehicle occurrences not considered

need of attention/clustering mechanism

What does the spatiotemporal neural network learn?

 Ideally the network learns slopes of trajectories in spacetime -> further insights needed

__ II 🛌 :: — + II = 🔚 __ II II __ __ :: (*)