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The Next Generation 
MINTS Environmental & Social 

Observatory for Actionable Insights

Measure -- Simulate -- Protect & Improve 
Intelligent Prediction -- Advanced Detection -- Accelerated Intervention 

Towards Decoding Human Chem-Bio Detection

Multi-Use Multi-scale Integrated Interactive Intelligent 
Sensing and Simulation providing Actionable Insights
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Platform
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Vision Statement 
Holistic smart sensing and simulation to provide timely actionable insights 
and transparent transformative data for data driven decisions.  

Machine learning combined with holistic sensing as a service is a 
powerful tool in addressing a wide range of challenging issues.
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Uses of machine learning: 
1.Calibration of low-cost sensors 
2.Creation of new data products 

(e.g. remotely sensed products) 
3.Super-resolution 
‣ Spatial  
‣ Wavelength 

4.Physics based machine 
learning, e.g. for solving ODEs 
for chemically reactive systems 
with inference of missing terms

Observation

Simulation Machine  
Learning

Data  
Assimilation

Calibration

New Data  
Products

Environmental Biometric
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Continuous Enhancement Development

Deployment

Calibration

Enhancement
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Multi-Use Multi-scale Integrated Interactive Intelligent Sensing & Simulation

Physical Environment Social Environment

Spatial

Year Month DayDecade

Temporal

Ubiquitous Multi-use
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24/7 Streaming 
Distributed 
Sentinels

Remote Sensing 
Sentinels

Aerial Survey  
Sentinel

Underwater 
Sentinel

Simulation 
Sentinels

Nine Sentinel Types

Ground Survey 
Sentinels

Robotic Boat 
Sentinel

Walking 
Sentinels

MINTS Comprehensive Context Engine Biometrics Package

1

2

3

Schematic showing the holistic biometric sensing environment we propose making the human response an integral part of the sensor 
network. (1) Equivital Black Ghost system, (2) Cognionics 64 electrode EEG cap, and (3) Tobii Pro Glasses 2 for eye tracking.

Human Sentinels Wearable Sensors

Human Performance

Real-time 
Environmental 

Context

Real-time 
Biometric State

Actionable 
Insights

Machine  
Learning 
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Example Platforms

Platform: Provides sensor with power, time and location stamps all observations, provides 
communication, and where relevant mobility. This may include wearable sensors.

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data Software Defined  
Sensors

Platform

Demographics

Diet
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Concept Definitions
‣ Software Defined Sensor: Smart sensor package which combines a 

physical sensing system with software/machine learning providing a 
variety of calibrated data products which can be updated via an app store. 

‣ Platform: Provides sensor with power, time and location stamps all 
observations, provides communication, and where relevant mobility. This 
may include wearable sensors. 

‣ Sentinel: Software Defined Sensor + Platform  

‣ Robot Team: A collection of co-operative autonomous sentinels 

‣ Cyber Physical Observatory: A collection of sentinels and/or robot 
teams providing real time actionable insights.

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data Software Defined  
Sensors

PlatformCrime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data Software Defined  
Sensors

Platform

Software Defined  
Sensors

Platform

Sentinel

Software Defined  
Sensors

Platform

Sentinel

Cyber Physical Observatory
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Fully Autonomous Robotic Team 
For Data Product Creation and Automated Cal/Val



MINTS-AI

System Review

Test Site in Nacona, TX
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System Capability
‣ Autonomous Robotic Aerial Vehicle — FreeFly Alta-X (USA) 

‣ Remote sensing payload 
‣ In-situ aerosol and gas sensing payload 
‣ On board machine learning 

‣ Autonomous Robotic Boat — Maritime Robotics Otter (Norway) 
‣ Remote sensing payload 
‣ In-situ water sensing payload 
‣ In-situ aerosol and gas sensing payload 
‣ In-situ meteorological sensing payload 

‣ Ground remote control stations 
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Autonomous 
Aerial Vehicle 
with Payload
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Real-Time Onboard 
Georectification

Goal 
‣ Generate the precise latitude & longitude for 

each hyper-spectral image pixel. 

Data Products Generated by the Resonon Pika 
XC2 Hyper-Spectral Camera 
‣ 1,600x1,000 pixels  
‣ 462 wavelengths from 391–1,011 nm (Visible 

to VNIR) 
‣ ~ 4 Gb per image 
‣ ENVI binary format 
‣ Latitude, longitude and altitude from the 

Global Positioning System (GPS) 
‣ Roll, pitch, and yaw from the Inertial 

measurement unit (IMU) 

Assumptions 
‣ The GPS, IMU and hyper-spectral imager are 

collocated.

 2 

 
2 Fundamentels of the coordinate systems and angles used in inertial navigation 

Inertial navigation is based on the continuous integration of the accelerations measured by the 
accelerometers. In a strapdown configuration the accelerations are measured in a body fixed 
coordinate system (index b; axes: xb: along, positive forward, yb: across, positive to the right, zb: 
vertical, positive down). Besides the correction due to gravity and other effects the accelerations have 
to be transformed prior to its integration into a local level coordinate system – the so-called navigation 
coordinate system (index n; axes: xn: northward, yn: eastward, zn: vertical in direction of the plumb 
line). This transformation is performed by a rotation matrix which includes three rotations of the Euler 
angles according to ARINC 705 (heading: ψ, roll: φ, pitch: θ). The angles and rotation matrix have to 
be continuously updated by means of the gyro measurements and are used for flight control and other 
navigational or stabilisation purposes. Figure 1 shows the definitions of the coordinate systems and 
the corresponding Euler angles.   

roll φ pitch θ ψheading

horizon

North

East

horizon

θφ ψ

right wing down nose up
turn right

zb
yb

xb
xb

yb

 
 
Figure 1: Definition of the body and the navigation coordinate systems and of the Euler angles φ, θ, ψ 
 
The roll, pitch and heading angles are used to transform a vector from the body coordinate system into 
the navigation system or vice versa. The transformation matrix itself is calculated by three consecutive 
rotation matrices in the following order: 1st rotation: roll around x-axis; 2nd rotation: pitch around y-
axis; 3rd rotation: heading (yaw) around z-axis. The combination of the three rotations results in the 
following orthogonal transformation matrix: 

Cb
n = Rz(y) $ Ry (h) $ Rx(v) =

cosy − siny 0
siny cosy 0

0 0 1
$

cosh 0 sin h
0 1 0

− sinh 0 cosh
$

1 0 0
0 cos v − sin v
0 sinv cosv  

 

Cb
n =

cosy $ cosh cosy $ sinh $ sinv− siny $ cosv cosy $ sinh $ cosv+ siny $ sinv
siny $cosh siny $ sinh $ sinv + cosy $ cosv siny $ sinh $ cosv− cosy $ sinv
−sinh cosh $ sinv cosh $ cosv  

   
The inverse transformation (from the navigation coordinate system into the body coordinate system 
can be easily performed by: 

C n
b = (C b

n)−1 = (C b
n)T  

 
The notation used for the indices directly indicates the transformation direction: the lower index 
represents the original system and the upper index the target system. Example: If the origin of a 
camera or a GPS antenna are mounted at different sites a lever arm transformation is needed to 
transfer the position of the GPS antenna to the camera. As the lever arm rb is measured in the body 
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Figure 5: Definition of the body coordinate system 
used in navigation 
 
 
 
 
 
After establishing the appropriate matrices either a 
vector from the image coordinate system into the 
object coordinate system or vice versa can be 
transformed by 
 

 

 rB = CEB $ rE = (CBE)T $ rE  object to image coordinate system (E- to B-system)   
 
rE = CBE $ rB = (CEB)−1 $ rB image to object coordinate system (B- to E-system) 

 
In this notation the vector to be transformed (input) is situated on the right side of the equation and the 
vector of the target system (output) on the left side. The upper index of the vector on the right must 
coincide with the lower index of the transformation matrix to be multiplied while its upper index 
indicates the target system. Note that the indices of the transposed or inverse matrices in brackets are 
vice versa. This will simplify the following derivations. 
 
If one of the transformation matrices is known the rotation angles (ϕ, ω, κ) can be recalculated from 
its matrix elements Cij  for which the definition of the rotation order is essential. The results are shown 
for the two systems BLUH and PATB in Table 1: 
 

System BLUH System PATB 

w = arctan C 31

C 33  
w = a rcsin C 13 = arctan

C 13

C 23
2 +C 33

2
 

z = arcsin − C32 = arctan −C32

C12
2 +C22

2
 

z = arctan −C23
C33  

x = arctan C12
C22  x = arctan −C12

C11  
Table 1: Calculation of the rotation angles ϕ, ω, κ from the matrix elements of the rotation matrix 
 
 
 
4 Derivation of the formulas to convert the attitude and heading angles of an INS for direct 

georeferencing 
 
The subjects of the previous two chapters are focussed on the individual treatment of the rotation and 
transformation matrices and the corresponding rotation angles used in navigation and in 
photogrammetry to transform a vector from one system to another system. Table 2 shows a 
management synopsis of the results. 
 
To convert the attitude and heading angles (φ, θ, ψ) of an INS into the photogrammetric angles 
(ϕ, ω, κ) the different coordinate systems and rotation angles definitions have to be considered. 
Furthermore the mapping system used and whether a correction due to earth curvature and meridian 
deviation has been applied in the photogrammetric system must be considered. For this reason a 

+x-axis +z-axis

+y-axis

body system (b-system)
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Hyper-spectral Spectrum
Create a HDF5 file containing:  
‣ Datacube 
‣ Wavelengths 
‣ Georectified Coordinates 
‣ Pixel Times  
‣ Pixel Resolutions 

The HDF5 files may be 
compressed for more efficient use 
of storage.

An example spectrum for a single pixel
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Full UAV Remote Sensing Data Stack

Thermal (Infrared) 
Image

Hyperspectral  
Datacube

High Resolution 
Visible Image
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Autonomous Boat: 
Maritime Robotics Otter

PRODUCT COMPONENTS

01 02

03

04 05

Custom Payloads

Vehicle Control Station

Bathymetry

Bathymetric Mapping System Specifications

WiFi, 4G and optional long range VHF radio link

Dual electrical fixed thrusters

Max-speed without sonar: 6kts / with sonar: 4,5kts

05 BATHYMETRY

04 CUSTOM SENSOR INTEGRATION
Sensors such as ADCP, CTD, fluorometers, hyperspectral imager and other environmental sensors is easily and cost-efficient integrated.

02 SPECIFICATIONS

03 BATHYMETRIC MAPPING SYSTEM

20 hours endurance with 2kts, 95kg total weight, Wifi, 4G and optional long range radio link. Dimensions: 200cm x 105cm x 85cm. The 
OTTER can be dismantled into smaller components (hulls, mid-section, batteries and payload), so that one person can transport the OTTER 

to the site of interest.

Repetitive tasks like bathymetry are an ideal task for an automated robotic system. The OTTER performs these tasks without the expense 
or extensive resources involved in traditional surveys.

01 VEHICLE CONTROL STATION 
Sensor and payload data can be monitored in the Vehicle Control Station. Multibeam data, swath width, coverage area, and quality 
parameters can be displayed in real-time on an intuitive user interface.

Ultra-compact singlebeam and multibeam sonar systems are available for integration for the OTTER. This makes the OTTER a turnkey 
bathymetric survey system for sheltered waters.

PRODUCT COMPONENTS

01 02

03

04 05

Custom Payloads

Vehicle Control Station

Bathymetry

Bathymetric Mapping System Specifications

WiFi, 4G and optional long range VHF radio link

Dual electrical fixed thrusters

Max-speed without sonar: 6kts / with sonar: 4,5kts

05 BATHYMETRY

04 CUSTOM SENSOR INTEGRATION
Sensors such as ADCP, CTD, fluorometers, hyperspectral imager and other environmental sensors is easily and cost-efficient integrated.

02 SPECIFICATIONS

03 BATHYMETRIC MAPPING SYSTEM

20 hours endurance with 2kts, 95kg total weight, Wifi, 4G and optional long range radio link. Dimensions: 200cm x 105cm x 85cm. The 
OTTER can be dismantled into smaller components (hulls, mid-section, batteries and payload), so that one person can transport the OTTER 

to the site of interest.

Repetitive tasks like bathymetry are an ideal task for an automated robotic system. The OTTER performs these tasks without the expense 
or extensive resources involved in traditional surveys.

01 VEHICLE CONTROL STATION 
Sensor and payload data can be monitored in the Vehicle Control Station. Multibeam data, swath width, coverage area, and quality 
parameters can be displayed in real-time on an intuitive user interface.

Ultra-compact singlebeam and multibeam sonar systems are available for integration for the OTTER. This makes the OTTER a turnkey 
bathymetric survey system for sheltered waters.
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Hyper-Spectral Data Cubes are Acquired
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Hyper-Spectral Data 
Cubes are Acquired
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Mode 1: 
Coordinated robots 

using onboard 
Machine Learning 
for specific data 

products

Remotely Sensed  
Hyperspectral and Synthetic  

Aperture RADAR Imagery 
Rapid Large Area Capability

In-situ accurate sensing using  
mass spectrometers,  

fluorometers, radiation  
sensors, etc. 

Local Accurate Capability

Large Area Data Products  
Provided by Machine Learning

Supervised  
Machine Learning

How? Mode 1: Coordinated robots using onboard  
Machine Learning for specific data products

Learn specific  
signatures

Multi-Variate Regression
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Training Data
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Over a period of just a few 
minutes we acquire thousands 
of training data points. This 
training data allows our 
machine learning algorithms 
to rapidly learn by example.

Isolated part of pond 
with no flow through.

The Training Data is Autonomously  
Collected by the Robot Team
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Automating Remote Sensing Data Product Creation
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Mode 2: Use remote 
sensing signatures  

to suggest optimum 
sampling patterns

Learn  
Signatures

Remotely Sensed  
Hyperspectral and Synthetic  

Aperture RADAR Imagery 
Rapid Large Area Capability

In-situ accurate sensing using  
mass spectrometers,  

fluorometers, radiation  
sensors, etc. 

Local Accurate Capability

Unsupervised  
Machine Learning

Tell Surface Robots Where  to 
Take Samples

Classification Provided by  
Machine Learning 

Clustering (Unsupervised 
Classification)
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Four Corners Power Plants

Sonoran Dessert
Los Angeles Area

Central Valley

Common Fire Area
Close Ups Showing Good Agreement With Observations

Alaska

(a)

(b) (c)

(d)

Great Salt Lake Desert

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data Software Defined  
Sensors

Platform

What Resolution Do We Need?
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Social Observatory

Social Observatory

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data

Demographics

Emergency Room 
Admissions

In Patient 
Admissions

School 
Absenteeism

Mortality Rate

Citizen Tips & 
Feedback

Software Defined  
Sensors

Platform

Sentinel Cyber Physical Observatory

Disease 
Incidence

Crime & Accident 
Statistics

Prescriptions Lab Results

Mobility Data Software Defined  
Sensors

Platform

Demographics

Diet

The social observatory provides real time social context
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HEALTH

Some studies have suggested that the overall 
health of a community can influence other is-
sues in the community. High rates of morbidity 
and mortality, disability, and unhealthy preg-
nancy outcomes can have both short-term and 
long-term negative consequences for individual 
lives as well as for the life of the community. 
The following preliminary analysis highlights 
specific health indicators that have been iden-
tified in zip code 75210.  Although this is not    
an exhaustive list of indicators, it does focus on 
certain core ones, such as infant mortality, age-
adjusted death rates, and premature mortal-
ity, which are part of the Healthy People 2010 
goals—a national set of indicators that have 
been deemed by the United States Department 
of Health and Human Services to be important 
measures of the nation’s overall health.

Healthy Pregnancy Indicators

• In 2004, 157 newborns resided in zip code 
75210.

• 57% of newborns in this zip code were African 
American, while 41% were Hispanic in 2004.

• Roughly one of every five childbirths in 2004 
was to a teenage mother.

• 91% of African American infants born in zip 
code 75210 in 2004 were born to unmarried 
mothers.

• At 12.14 per 1000 live births, the infant mortal-
ity rate in zip code 75210 is one of the highest 
in the city of Dallas or Dallas County and is well 
above the Healthy People 2010 objectives.

Mortality Indicators

• Between 2000 and 2003, the two leading 
causes of death were cardiovascular disease 
and cancer in zip code 75210.

Figure 1.   Infant Mortality per 1,000 Live Births by Zip Code, 1999-2003
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Research Compilation: Zip Code 75210
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Infant Mortality per 1,000 Live Births by Zip Code, 

• Between 2003 and 2004, roughly 44% of         
African American deaths in zip code 75210    
occurred before the age of 66.

• The age-adjusted death rate per 100,000 popu-
lation for all causes of death in 2003 was 1,273 
deaths in zip code 75210, higher than the city 
of Dallas’ rate of 907 deaths.

• The age-adjusted diabetes death rate in zip 
code 75210 between 1999 and 2003 was sig-
nificantly higher than the diabetes death rate 
in many other zip codes in the city of Dallas.

• Parkland Hospital has identified zip codes 
75210 and 75215 as being the least healthy ar-
eas in Dallas County.

ECONOMY

For a community to be vibrant and healthy, it must 
have a strong economic base. Having a strong 
economic base gives individuals in a community 
a  chance to purchase decent housing, adequately 
plan for retirement, and save money to pay for col-

lege education for their children. The economic 
base for zip code 75210 is illustrated through data 
in Table 3, Figures 2 and 3, and a list of employ-
ment, income, and retail indicators.

Employment, Income, and Retail

The most recent data derived from the 2000        
decennial census estimate that:

• Residents in zip code 75210 were significantly 
less likely to be employed than other residents 
in Dallas. Roughly 40% of the citizens ages 16 
and older in zip code 75210 were in the labor 
force, compared with 58% for the city of Dallas.  

• The percentage of residents employed in the 
service industry was twice as high as the rate 
for the city of Dallas—jobs that traditionally 
pay lower wages.  

• Roughly one of every two residents in zip code 
75210 is living in poverty, compared to one of 
every six residents in the city of Dallas.

Table 3.  Individual Income Tax Returns: Selected Income and Tax Items by 
State, Zip Code, and Adjusted Gross income, Tax Year 2002

Adjusted 
Gross          

Income
Number of 

Returns

Total 
Number of 
Exemptions

Dependent 
Exemptions

Adjusted 
Gross          

Income*

Salaries 
and Wages:
Number of 

Returns*

Salaries 
and Wages:

Amount*

Total Tax: 
Number of 

Returns
Total Tax: 
Amount*

Total for 
75210

2,510 5,084 2,402 43,253 2,378 39,842 1,040 1,829

Under 
$10,000

822 1,445 641 4,218 760 3,889 74 18

$10K  to          
under $25K

1,124 2,413 1,195 18,784 1,066 17,272 479 382

$25K to 
under $50K

514 1,106 517 16,840 504 16,074 440 1,062

$50K or 
higher

50 120 49 3,411 48 2,607 47 367

(*Money in thousands of dollars; Eg. 3,776=$3,776,000.00)

Table 2. Age-Adjusted Death Rates Per 100,000, Years 2000-2003

Texas Dallas County City of Dallas 75210
All causes 876.98 883.88 907.00 1,273
CVD 252.65 260.83 263.53 459.80
Diabetes 31.80 19.38 26.82 52.45
Stroke 63.38 63.35 64.20 48.44
Cancer 191.28 198.18 202.86 339.61

Research Compilation: Zip Code 75210
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App Store

Real time holistic 
environmental and social 

data for actionable insights. 
With App stores for on the 
fly generation of new data 

products.

Cyber Physical Social Observatory
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Ideal Spatial resolution is 0.5 km
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W. A. Harrison et al. 
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(a) 

 
(b) 

Figure 4. Data captured on May 23, 2014 (a) and May 28, 2014 (b). Color scale indicates PM2.5 
concentration.                                                                                  

W. A. Harrison et al. 
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Figure 4. Data captured on May 23, 2014 (a) and May 28, 2014 (b). Color scale indicates PM2.5 
concentration.                                                                                  

May 23, 2014 May 28, 2014

W. A. Harrison et al. 
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(a) 

 
(b) 

Figure 5. Histograms and frequency distributions for May 23, 2014 (a) and May 28, 2014 (b). The color of the histogram 
represents the aqi defined by the EPA.                                                                                 

 
12 through the morning of May 14. Epoch D, corresponding to the data collected on May 14, showed the lowest 
particle counts for the month. Epoch E corresponds to several days of no rain and shows a steady increase of 
particle counts ending with 3 days of slight rainfall totaling only 6.86 mm (0.27") on May 25 - 27. However 
even though the amount of rain was approximately half of what fell very quickly on May 8, epoch F shows a 
decrease in particle counts. This indicates that a quick rainfall may not wash particles out of the atmosphere. An 
extended period of rain is needed. 

To objectively characterize the different types of size distribution observed, an SOM was used to classify the 
particle counts into 10 classes using each size bin as a variable, as seen in Figure 3(c). For most epochs, the data 
falls into several classes, but epochs C and D fall solely into classes 9 and 10, respectively. Comparing the size 
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Sensing Hierarchy 
Cheaper 
Commercial 
Sensors

Standardized 
Commercial Sensors 

Research Grade 
Sensors

FRM / FEM  
Sensors

10

Break-through Family of Sensors

World’s only certified sensor that accurately counts 
every particle from 0.1 um - 10 um in real-time

Highly Accurate

PM10 to PM0.1

Particle counts and size, not just mass

Software Defined

>6000 ug/m3

<$30-$95
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Break-through Family of Sensors 
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Break-through Family of Sensors

World’s only certified sensor that accurately counts 
every particle from 0.1 um - 10 um in real-time

Highly Accurate

PM10 to PM0.1

Particle counts and size, not just mass

Software Defined

>6000 ug/m3

<$30-$95
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EPA Monitors

https://www.sharedairdfw.com 
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EPA Monitors, UTD and Purple Air Sensors

https://www.sharedairdfw.com
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Real-Time Complex Terrain 
Simulation & Sensing for Dense 

Urban Environments

Three-dimensional rendering of a FAST3D-CT simulation 
showing geometric complexity of the urban geometry 
database and the good vertical mixing caused by the building 
vortex and recirculation patterns in midtown Manhattan.
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