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ESA-ECMWF Workshop 2021

Ultimate goal: Assimilation of 2D image |
+ Examples:
« Satellite images (brightness temperature)

- Radar images (reflectivity)

* Challenges: Existing strategies
- Non-Gaussianity - Gaussian Anamorphosis (GA)
- Thinning, Linear dimension reduction by

» Dimensional redundancy EOF (aka PCA)

* Interpixel correlations
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Background: Gaussian anamorphosis (GA)

Difficulty in assimilating non-Gaussian data:

Prior distribution p(x) and/or likelihood p(y|x) are not Gaussian (or cannot be well approximated by
Gaussian distributions)

- Conventional DA methods based on Gaussian assumption (Var or EnKF) do not function well

ldea of Gaussian anamorphosis:

- Transform x (model states) and/or y (observables) so that the prior p(x) and likelihood p(y|x)
become closer to Gaussian

+ then perform Gaussian-based DA in the transformed space, and transform the resultant analysis
(or posterior distribution) back to the physical space

Limitation: variable transforms can only be constructed for univariate case in practice (construction
for multidimensional case requires prohibitively large data set or simiply unfeasibly expensive)
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Ultimate goal: Assimilaion f 2D image
+ Examples:
« Satellite images (brightness temperature)

- Radar images (reflectivity)

- Challenges: _ Wish to simultaneously achieve the following:

« Variable transforms that brings distributions
closer to Gaussian
» Dimensional redundancy [~ « Dimension reduction
_ _ « Removal of error correlation
* Interpixel correlations | A solution has been proposed in ML community:
Variational Auto-Encoder (VAE)

* Non-Gaussianity
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Variational Auto-Encoder (VAE)

Generative Model which assumes:

* We have low-dimensional latent variable z, each element of which is
uncorrelated and follows independent standard Gaussian distribution z~N(0O,I)

* High-dimensional complex data x are generated by nonlinearly transforming
such z

Under this assumption, VAE learns a good Gaussian approximation of p(x|z) and
p(z|x) solely from samples of x.

* No knowledge about z is required (unsupervised learning).
- Still, the size of z needs to be externally determined (or tuned).
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VAE: Schematic illustration

o | pe(z)~ NO,I) Assumption:
rior distribution: pe(z ~ ) . . .
: > °  High-dimensional complex data x are generated from low-
dimensional Gaussian variables z~N(0,l)
- Correspondence between such x and z are stochastically
zspace 1ow determined by p(x|z) and p(z|x).
dimension  We can only observe x. Instances of z are not available.
' . « Under such situation, we wish to somehow obtain good
approximations of p(x|z) and p(z|x).
i h |
Encoder: qq(z|x) Decoder: pe(x|z) * Now, by learning realizations X of x, we can obtain pg(x|z)
Y 7 and q,(z|x) that well approximate p(x|z) and p(z|x).
: & *  pe(x]|Z) and q4(z|x) are both Gaussian distribution, whose
mean and covariance are neural networks, whose weight
. high parameters are to be estimated by machine learning.
X-SPace  jimension
- The encoder q,(z|x) stochastically transforms non-Gaussian x
: _ into Gaussian z. In this sense, this can be interpreted as a
i From Kingma and ey . . . .
D Welling (2017) multidimensional extension to Gaussain Anamorphosis (<
ataset: arXiv:1906.02691 the only originality of this research) 6
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Non-Gaussian Data assimilation via VAE: fundamental idea

+ Just like DA methods that use Gaussian Anamorphosis, transform non-Gaussian data
(observation and/or background) by the mean of the VAE encoder q(z|x)

+ then perform regular Gaussian-based data assimilation (Var or EnKF) in the
transformed z-space by the mean of the VAE decoder py(x|z)).

* Note: Encoder and decoder incur transformation errors on its own.
* But VAE neatly quantifies such errors as the variances of pg(x|z) and q,(z|x)

- > Can incorporate transformation errors by adding encoder variances to the diagonal
of R and B in z-space

* This acts like an automated QC in the sense that the data that are incompatible with the
training data (=outliers) are automatically assigned large error variances and hence are
not used in assimilation.
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Non-Gaussian DA with pre- and post-processing by VAE
- For simplicity, consider a special case where all state variables are observed (H=id)

(off-line preparation)

«  Suppose a large amount of observation y° from climatological distribution are available.

- We train VAE feeding climatological y° data as input to obtain the encoder q,(z|x) and decoder pg(x|z).

« From the assumption that H=id, state variables x and observables y share common encoder and decoder.

(procedure at each assimilation step)

1) Prepare z-space observation z° as an encoder mean of y° id Gaussian
imi ior xP i b ; ~ , world
2) Similarly, transform prior x° into z° in z-space x — Zy
p(y)

3) Perform Gaussian-based DA (Var or EnKF) in z-space, with following f(z,)
tweaks (deviation from typical use of Gaussian-Anamorphosis): N §
non-Gaussian

- add x->z-encoder variance g4(x®) to the diagonal of B . |
. add y>z-encoder variance 02(y°) to the diagonal of R H=id Y world
4) Transform z-space posterior back into physical space by VAE decoder
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Idealized Experiment:
Correction of positional error by
assimilation of image data
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Problem:

Idealized Experiment: Problem set-up

Consider a disk with an “eye” (idealization of a tropical cyclone),
whose center position is climatologically Gaussian distributed with N((0,0), 22 X I,).
Assume that background is twice more accurate than the climatology, N((0,0), ),

and the observation is even more accurate by a factor of two but with displaced mean, N(4,4), 122 x1,).

The true latent variables are the center position.

Given a center position, an image with 41x41 pixels is generated *gl!
whose pixel values are in [0, 1]

g
8
:
%
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7553 [
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20 -10 0 10 20 -20-10 0 10 20

&8

- Assume that the true latent variables, their PDF, and the rule !! §§

that generates the images from the the latent variables, “ g y ‘ §§
are all unknown, but climatology of observed images are available. #2010 0 10 20 #2010 0 10 20

Under such a condition, can we correct “tropical cyclone” position errors by assimilating
images?

N.B.: This problem may seem trivial to human eyes, but is actually very difficult for
classical DA methods given the strong non-Gaussianity of the pixel data (superposition
of two delta functions centered at 0 and 1 in this case).

10
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Idealized Experiment: ideal analysis (used as reference hereafter)

* In this problem, the center position is
Gaussian distributed, so the optimal
solution is obtained by Kalman filter ol
assimilation of the center position. °l

bg mean

» Analysis thus obtained is hereafter ot 10 0 10 20 o

used as the a reference solution.
Performance of various DA methods

Anl Inc
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Idealized Experiment: analyses from existing methods

(10,000 member EnKF)
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ldealized Experiment: VAE setup

Draw 5,000 instances of the center position from the climatological distribution and generate
5,000 samples of x that follow climatological distribution.

Train VAE on such 5,000 climatological dataset to obtain encoder q,(z|x) and decoder pg(x|z)

Encoder q,(z|x) configuration:
* Multilayer perceptron with only one hidden layer

* Input layer: 41x41-dimensional x - (dense layer with ReLU activation) - hidden layer, 500
neurons -> (dense layer with identity activation) = output layer: mean py, and log-variance
logo?,, 10 neurons each

Decoder py(x|z) configuration:

* a mirror of encoder

* Input layer: 10-dimensional z - (dense layer with ReLU activation) - hidden layer ,500 neurons -
(dense layer, sigmoid activation) = output layer: the mean fg (z) of pg(x|z)

« pe(X|Z) = N(fg (2), 0% 1), with the variance 02, =0.012 assumed independent of z

13
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Idealized Experiment: Prerequisite for VAE-based @esa

b

assimilation to work well

« Trainning on VAE should be successful, which means that:
1. The reconstruction error should be small enough: Il fo(ue(x)) —x I <l x|

2. The distribution of encoded data should be close to Gaussian

- The above prerequisites should hold not for the training data but also for
iIndependent test data.

« We proposed to train VAE on climatological samples.

- The above prerequisites should hold not only for climatological samples, but
also for the instantaneous flow-dependent distribution that reflect “errors of the
day” (< non-trivial assumption)

14
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Idealized Experiment: Reconstruction error of the trained VAE

reconstructed X reconstruction
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Idealized Experiment: Gaussianity of encoded data @esa
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Marginal histograms of each
component of the encoder mean
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 allLLLLLLLL Ny Not perfectly Gaussian, but good
157105 05 10 15 enough considering that pixel-wise
marginal distribution of the original
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superposition of two delta functions
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Idealized Experiment: Result of VAE-aided assimilation @esa

bg mean obs
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Idealized Experiment: Result of VAE-aided assimilation @esa

« Comparison with existing methods

d) VAE+EnKF
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Idealized Experiment: Built-in QC of VAE-aided assimilation esa

Outlier obs
5-sigma deviation in

« Machine learning is often blamed for both directions
. . bg mean obs
being incapable to handle events not

contained in training dataset. fz 09
- However, with VAE, such “outlier events” | 08
. . 0.4
can be detected by increase in encoder .} 03
Varian(?e . 2030 20 10 0 10 20 30 0" 20730 20 110 0 10 20 30
« -2 Adding encoder variance to R allows
to automatically ignore outlier Ariine Vs meanan
observations. 2 075 2]
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Summary and ideas toward more realistic situation Eesa

- VAE can be used as a multidimensional extension to Gaussian Anamorphosis to effectively
assimilate non-Gaussian image data. Promising results have been obtained for a simplistic
case where all state variables are observed.

o o _ UyoH of, Gaussian

- Challenge for application to more realistic situations: y x world

* highly nonlinear observation operator. When obs op H # id, VAE
has to be trained separately for state vector x and observable y, resulting ] f(2,) J
in different z-space for each, so that obs op in z-space is a composition CXATX
of VAE decoder for x (which is a nonlinear neural net), obs op in physical

space H, and VAE encoder for y (again a nonlinear neural net). X —— V  Gaussian

- > VAE may resolve non-Gaussianity, but it comes at the cost of H world
introducing nonlinearity. How can the latter be handled?

« Promising approach is perhaps to combine VAE with iterative
ensemble Kalman smoother (IEnKS; Evensen 2018; Bocquet and
Sakov 2014)

* VAE expected to handle non-Gaussianity. IENKS will likely
overcome non-linearity in observation operator.
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