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• Examples: 
• Satellite images (brightness temperature)
• Radar images (reflectivity)

• Challenges:
• Non-Gaussianity
• Dimensional redundancy
• Interpixel correlations

ESA-ECMWF Workshop 2021

Ultimate goal: Assimilation of 2D images

Existing strategies
à Gaussian Anamorphosis (GA)
à Thinning, Linear dimension reduction by    

EOF (aka PCA)
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Background: Gaussian anamorphosis (GA) 
Difficulty in assimilating non-Gaussian data:
Prior distribution p(x) and/or likelihood p(y|x) are not Gaussian (or cannot be well approximated by 
Gaussian distributions)
à Conventional DA methods based on Gaussian assumption (Var or EnKF) do not function well

Idea of Gaussian anamorphosis:
• Transform x (model states) and/or y (observables) so that the prior p(x) and likelihood p(y|x) 

become closer to Gaussian
• then perform Gaussian-based DA in the transformed space, and transform the resultant analysis 

(or posterior distribution) back to the physical space

Limitation: variable transforms can only be constructed for univariate case in practice (construction 
for multidimensional case requires prohibitively large data set or simiply unfeasibly expensive)
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• Examples: 
• Satellite images (brightness temperature)
• Radar images (reflectivity)

• Challenges:
• Non-Gaussianity
• Dimensional redundancy
• Interpixel correlations

ESA-ECMWF Workshop 2021

Ultimate goal: Assimilation of 2D images

Wish to simultaneously achieve the following:
• Variable transforms that brings distributions 

closer to Gaussian
• Dimension reduction
• Removal of error correlation
A solution has been proposed in ML community: 
Variational Auto-Encoder (VAE)
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Variational Auto-Encoder (VAE) 
Generative Model which assumes:
• We have low-dimensional latent variable z, each element of which is 

uncorrelated and follows independent standard Gaussian distribution z～N(0,I)
• High-dimensional complex data x are generated by nonlinearly transforming 

such z

Under this assumption, VAE learns a good Gaussian approximation of p(x|z) and 
p(z|x) solely from samples of x.
• No knowledge about z is required (unsupervised learning).
• Still, the size of z needs to be externally determined (or tuned).
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VAE: Schematic illustration
Assumption:
• High-dimensional complex data x are generated from low-

dimensional Gaussian variables z～N(0,I)
• Correspondence between such x and z are stochastically 

determined by p(x|z) and p(z|x).
• We can only observe x. Instances of z are not available.
• Under such situation, we wish to somehow obtain good 

approximations of p(x|z) and p(z|x).

• Now, by learning realizations X of x, we can obtain pθ(x|z) 
and qφ(z|x) that well approximate p(x|z) and p(z|x).

• pθ(x|z) and qφ(z|x) are both Gaussian distribution, whose 
mean and covariance are neural networks, whose weight 
parameters are to be estimated by machine learning.

• The encoder qφ(z|x) stochastically transforms non-Gaussian x
into Gaussian z. In this sense, this can be interpreted as a 
multidimensional extension to Gaussain Anamorphosis (ß
the only originality of this research)

From Kingma and 
Welling (2017)
arXiv:1906.02691

low 
dimension

pθ(z)~N(0,I)

high
dimension
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Non-Gaussian Data assimilation via VAE: fundamental idea
• Just like DA methods that use Gaussian Anamorphosis, transform non-Gaussian data 

(observation and/or background) by the mean of the VAE encoder qφ(z|x)
• then perform regular Gaussian-based data assimilation (Var or EnKF) in the 

transformed z-space by the mean of the VAE decoder pθ(x|z)).

• Note: Encoder and decoder incur transformation errors on its own.
• But VAE neatly quantifies such errors as the variances of pθ(x|z) and qφ(z|x)
• à Can incorporate transformation errors by adding encoder variances to the diagonal 

of R and B in z-space
• This acts like an automated QC in the sense that the data that are incompatible with the 

training data (=outliers) are automatically assigned large error variances and hence are 
not used in assimilation.
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Non-Gaussian DA with pre- and post-processing by VAE
• For simplicity, consider a special case where all state variables are observed (H=id) 

(off-line preparation)
• Suppose a large amount of observation yo from climatological distribution are available.
• We train VAE feeding climatological yo data as input to obtain the encoder qφ(z|x) and decoder  pθ(x|z).
• From the assumption that H=id, state variables x and observables y share common encoder and decoder.

zx zy

x y
H=id

f(zx) µ(y)

id

non-Gaussian 
world

Gaussian 
world

(procedure at each assimilation step)
1) Prepare z-space observation zo as an encoder  mean of yo

2) Similarly, transform prior xb into zb in z-space
3) Perform Gaussian-based DA (Var or EnKF) in z-space, with following 

tweaks (deviation from typical use of Gaussian-Anamorphosis):
• add xàz-encoder variance σ2(xb) to the diagonal of B
• add yàz-encoder variance σ2(yo) to the diagonal of R

4) Transform z-space posterior back into physical space by VAE decoder
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Idealized Experiment:
Correction of positional error by 

assimilation of image data
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Idealized Experiment: Problem set-up
• Consider a disk with an “eye” (idealization of a tropical cyclone),
• whose center position is climatologically Gaussian distributed with N((0,0), 22×I2).
• Assume that background is twice more accurate than the climatology, N((0,0), I2),
• and the observation is even more accurate by a factor of two but with displaced mean,  N(4,4), 1⁄22×I2).
• The true latent variables are the center position.
• Given a center position, an image with 41x41 pixels is generated 

whose pixel values are in [0, 1]

Problem:
• Assume that the true latent variables, their PDF, and the rule 

that generates the images from the the latent variables, 
are all unknown, but climatology of observed images are available.

• Under such a condition, can we correct “tropical cyclone” position errors by assimilating 
images?

• N.B.: This problem may seem trivial to human eyes, but is actually very difficult for 
classical DA methods given the strong non-Gaussianity of the pixel data (superposition 
of two delta functions centered at 0 and 1 in this case).
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Idealized Experiment: ideal analysis (used as reference hereafter)
• In this problem, the center position is 

Gaussian distributed, so the optimal 
solution is obtained by Kalman filter 
assimilation of the center position.

• Analysis thus obtained is hereafter
used as the a reference solution.
Performance of various DA methods 
are evaluated by how close their 
analyses are to this reference solution.
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Idealized Experiment: analyses from existing methods 
(10,000 member EnKF)
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reference
naïve EnKF
（Perturbed Obs,

diagonal R）

EnKF with 
thinning

(every 4 pixels)

EnKF
assimilating 

TC-Vital
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Idealized Experiment: VAE setup
• Draw 5,000 instances of the center position from the climatological distribution and generate 

5,000 samples of x that follow climatological distribution.
• Train VAE on such 5,000 climatological dataset to obtain encoder qφ(z|x) and  decoder pθ(x|z)

• Encoder qφ(z|x) configuration:
• Multilayer perceptron with only one hidden layer
• Input layer: 41x41-dimensional x à (dense layer with ReLU activation) à hidden layer, 500 

neurons à (dense layer with identity activation) à output layer: mean μφ and log-variance 
logσ2φ , 10 neurons each

• Decoder pθ(x|z) configuration: 
• a mirror of encoder
• Input layer: 10-dimensional z à (dense layer with ReLU activation)  à hidden layer ,500 neurons à

(dense layer, sigmoid activation) à output layer:  the mean fθ (z) of pθ(x|z)
• pθ(x|z) = N(fθ (z), σ2x I), with the variance  σ2x =0.012 assumed independent of z
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Idealized Experiment: Prerequisite for VAE-based 
assimilation to work well 

• Trainning on VAE should be successful, which means that:
1. The reconstruction error should be small enough:   ǁ fθ(μφ(x)) – x ǁ  ≪ ǁ x ǁ 

2. The distribution of encoded data should be close to Gaussian

• The above prerequisites should hold not for the training data but also for
independent test data.

• We proposed to train VAE on climatological samples.

• The above prerequisites should hold not only for climatological samples, but 
also for the instantaneous flow-dependent distribution that reflect “errors of the
day” (ß non-trivial assumption)
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Idealized Experiment: Reconstruction error of the trained VAE
15

original x reconstructed x
fθ(μφ(x))

reconstruction 
error

random draw of 
x from pclim(x)

random draw of 
x from prior p(x)
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Idealized Experiment: Gaussianity of encoded data 
16

Marginal histograms of each 
component of the encoder mean 
{μφ(x)| x ~ pclim(X)}

Not perfectly Gaussian, but good
enough considering that pixel-wise 
marginal distribution of the original 
data (before encoding) was a 
superposition of two delta functions  
a δ(x-0)+(1-a)δ(x-1)
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Idealized Experiment: Result of VAE-aided assimilation
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• Very close to the optimal 
reference analysis

• without any visible distortion to 
the “disk-with-an-eye” structure
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Idealized Experiment: Result of VAE-aided assimilation
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• Comparison with existing methods
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Idealized Experiment: Built-in QC of VAE-aided assimilation
19

• Machine learning is often blamed for 
being incapable to handle events not 
contained in training dataset.

• However, with VAE, such “outlier events” 
can be detected by increase in encoder 
variance

• à Adding encoder variance to R allows 
to automatically ignore outlier 
observations.

Outlier obs
5-sigma deviation in 

both directions
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Summary and ideas toward more realistic situation

• VAE can be used as a multidimensional extension to Gaussian Anamorphosis to effectively 
assimilate non-Gaussian image data. Promising results have been obtained for a simplistic 
case where all state variables are observed.
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zx zy

x y
H

fx(zx) µy(y)

µyoH o fx

non-
Gaussian 
world

Gaussian 
world• Challenge for application to more realistic situations:

• highly nonlinear observation operator. When obs op H ≠ id, VAE 
has to be trained separately for state vector x and observable y, resulting 
in different z-space for each, so that obs op in z-space is a composition 
of VAE decoder for x (which is a nonlinear neural net), obs op in physical 
space H, and VAE encoder for y (again a nonlinear neural net).

• à VAE may resolve non-Gaussianity, but it comes at the cost of 
introducing nonlinearity. How can the latter be handled?

• Promising approach is perhaps to combine VAE with iterative 
ensemble Kalman smoother (IEnKS; Evensen 2018; Bocquet and 
Sakov 2014)

• VAE expected to handle non-Gaussianity. IEnKS will likely 
overcome non-linearity in observation operator.


