

Data-Driven Surrogate Model with Latent Data assimilation for Wildfire Forecasting

Sibo Cheng, Colin Prentice, Yike Guo and Rossella Arcucci Imperial College London

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Motivation

Year

The recent wildfires in California in 2018 cost more than \$27 billion capital loss

https://firms.modaps.eosdis.nasa.gov/map

04/11/2021

Study areas and observations

Daily satellite (MODIS) observation

Images every 1-2 days at 1km resolution

Idea:

- Learning from simulation data
- Using satellite observations to validate/assimilate

_	

Buck fire, 2017

Fire	latitude		longitude		area
_	North	South	West	East	-
Bear 2020	39.8567	39.7780	-121.1615	-121.0171	$\approx 108 \mathrm{km}^2$
Buck 2017	40.2558	40.1707	-123.0791	-122.9734	$pprox 83 \mathrm{km}^2$
Pier 2017	36.1909	36.0543	-118.798698	-118.616145	$\approx 244 \mathrm{km}^2$

Table 1: study areas of the three wildfires

Cellular Automata (CA) simulator

CA (Buck fire)

Satellite observations

Stochastic simulation

 $P_{\text{bun}} = p_h (1 + p_{\text{veg}})(1 + p_{\text{den}})p_s$

(c)

Other fire simulators/algorithms

- Rothermel equation
- Flammap
- SPARK
- CA

It is time consuming to simulate large fires

Reduced order modelling

Principle component analysis (PCA)

Variational auto-encoder

Convolution BN ReLU Pooling Upsampling Softmax Layer Layer Layer Layer

Layer

Layer

CAE vs. POD (reconstructions)

POD

(g) training: AE

(i) obs: AE

(f) obs: POD

0.200 0.175

BC BC 0.150 0.125 0.100

0.075 0.050

0.025

0.18 0.16

> 1 2 3

÷

days

CAEPOD

(h) test: AE

(e) $\lambda_1(\Delta_t = 10)$

DNN

÷

Prediction in the latent space -2600 -2800 -3007 -3007 -320 prediction ⁻¹⁰ 0 prediction 400 -3200 -3000 prediction prediction 200 10 (a) $\lambda_1(\Delta_t = 1)$ (b) $\lambda_2(\Delta_t = 1)$ (c) $\lambda_3(\Delta_t = 1)$ (d) $\lambda_{100}(\Delta_t = 1)$ -2800 + en -3000 -3200 en -3200 -3800 -3600 -3400 -3200 -3000 prediction -100 0 100 200 300 prediction o 20 prediction -2800 -260 prediction

(g) $\lambda_3(\Delta_t = 10)$

(f) $\lambda_2(\Delta_t = 10)$

(h) $\lambda_{100}(\Delta_t = 10)$

Prediction error

•

Latent Assimilation: principle

DI01 covariance tuning Desroziers & Ivanov, 2001

Improved prediction/reconstruction

÷

Latent Assimilation: results

Table 5: Averaged computational time for one time-step using different approaches

Fire

data

learning

Conclusion and future work

Conclusion

- The ROM- and RNN-based surrogate model is very efficient
- Latent Assimilation is computationally cheap and can be performed near real-time

Future works

- Physics-informed machine learning
- Variational latent assimilation
- More general machine learning modelling for fire spread prediction

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = ■ ■ ■ ■ = = = ■ ₩ = = = ■