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Parameterizations are simplified representations of unresolved 
processes and they introduce inaccuracies to climate models
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Parameterizations are simplified representations of unresolved 
processes and they introduce inaccuracies to climate models
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Recent attempts at machine learning parameterizations had 
some success but were not always stable, energy conserving 

and without climate drift
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E.g., Rasp et al. 2018, O’Gorman & Dwyer 2018 , Brenowitz & Bretherton (2018,2019), Brenowitz et al. (2020)
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Recent attempts at machine learning parameterizations had 
some success but were not always stable, energy conserving 

and without climate drift

+ Climate drift 
(cannot obtain statistics)

Unstable simulations

Do not obey to physical 
constraints

E.g., Rasp et al. 2018, O’Gorman & Dwyer 2018 , Brenowitz & Bretherton (2018,2019), Brenowitz et al. (2020)



High resolution Coarse resolution

Yuval & O’Gorman (2020),
Yuval et al. (2021)

Previous study: we achieved physically consistent 
parameterization that leads to stable and accurate simulations



High resolution Coarse resolution
Coarse resolution with
ML parameterization
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Previous study: we achieved physically consistent 
parameterization that leads to stable and accurate simulations

Yuval & O’Gorman (2020),
Yuval et al. (2021)
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Subgrid processes such as convection and gravity waves 
transport horizontal momentum in the vertical

Convective momentum transport
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Subgrid processes such as convection and gravity waves 
transport horizontal momentum in the vertical

Convective momentum transport

E.g., Wu et al. (2007), Song et al. (2008), 
Woelfle et al. (2018)

Image credit: Joe Tribbia presentation
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Gravity waves above the Indian Ocean

E.g., Dunkerton (1997), Ray et al. (1998), 
Orr et al. (2010)



Convective momentum transport has large consequences for 
the tropical atmospheric circulation and precipitation
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Richter and Rasch (2007)
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Convective momentum transport has large consequences for 
the tropical atmospheric circulation and precipitation

Annual mean surface winds (observations)

Model (no momentum param.) - observations

Model (with mom.)- Model (no mom.)

Annual mean precipitation (observations)

Model (no momentum param.) - observations

Model (with mom.)- Model (no mom.)

Richter and Rasch (2007)
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We learn from a high-resolution simulation of the atmosphere in a 
quasi-global domain

• SAM model with hypohydrostatic rescaling 
(grid spacing 12km, effective 3km)

• Prescribed sea-surface temperature distribution that 
is symmetric about the equator

SAM model: Khairoutdinov et al 2003
Hypohydrostatic/DARE: e.g. Kuang et al 2005
Original simulations thanks to Bill Boos and Alexey Federov

Outgoing longwave 
radiation shown
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We coarse-grain high-resolution simulation to calculate the 
contribution of subgrid momentum transport

Surface zonal wind

Coarse grained momentum flux
from high resolution simulation

Resolved momentum flux
When running a low resolution simulation
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Mean subgrid momentum fluxes are downgradient and 
the neural network approximates well the mean fluxes

Offline results
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Mean subgrid momentum fluxes are downgradient and 
the neural network approximates well the mean fluxes
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Wind shear shown in contours

Offline results

Yuval and O’Gorman  (ESSOAr preprint)



Calculated fluxes are similar to a simplified parameterization that 
was fit to reanalysis, and NN accurately predict the mean fluxes

Reanalysis: mean residual momentum tendency scales like 
a simple momentum convection parameterization 

Reanalysis 
momentum 
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Simple parameterization:

Yang et al. (2013)
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It is more difficult to predict subgrid momentum fluxes compared to subgrid
moisture fluxes
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Neural network parameterization of subgrid momentum transport 
improves some characteristics of the atmospheric circulation

High-res (target)

CMT affects surface wind: 
e.g., Richter and Rasch (2007), 
Woelfle et al. (2018)Yuval and O’Gorman  (ESSOAr preprint)
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Neural network parameterization of subgrid momentum transport 
improves some characteristics of the atmospheric circulation

Low-res  
+ NN All variables
(including momentum)

Low-res  + NN (moisture and thermodynamic; no momentum) 

Low-res

High-res (target) Stable simulation
Stable simulation

CMT affects surface wind: 
e.g., Richter and Rasch (2007), 
Woelfle et al. (2018)Yuval and O’Gorman  (ESSOAr preprint)



Neural network parameterization can also overestimate 
the effect subgrid momentum transport

High-resolution (target)

High-resolution (target)

x8 bias
NN no mom– target

x8 correction due 
to NN momentum param
NN with mom – NN no mom

x4 correction due 
to NN momentum param

x4 bias
NN no mom– target



Conclusions
• Physically-consistent neural-network 

parameterization for subgrid momentum learned 
from fully 3-D high-resolution simulation 

• It is challenging to predict subgrid momentum fluxes

• Machine-learning momentum parameterization + 
atmospheric model at climate-model resolution -> 
stable simulation and improve some characteristics 
of the atmospheric circulation 



Substantially better performance when predicting the 
absolute value of momentum fluxes
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