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Parameterizations are simplified representations of unresolved
processes and they introduce inaccuracies to climate models

Laws of physics
(e.g., fluid dynamics)

Figure credit: NOAA
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Parameterizations are simplified representations of unresolved
processes and they introduce inaccuracies to climate models

Laws of physics
(e.g., fluid dynamics)

Parameterization

Figure credit: NOAA
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A different approach to parameterization:
Use machine learning to create new parameterizations trained
on high-resolution models

High resolution model
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A different approach to parameterization:
Use machine learning to create new parameterizations trained
on high-resolution models
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Recent attempts at machine learning parameterizations had
some success but were not always stable, energy conserving
and without climate drift

E.g., Raspetal 2018, O'Gorman & Dwyer 2018, Brenowitz & Bretherton (2018,2019), Brenowitz et al. (2020)
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Recent attempts at machine learning parameterizations had
some success but were not always stable, energy conserving
and without climate drift

Unstable simulations

, Climate drift
(cannot obtain statistics)

Do not obey to physical
constraints

E.g., Raspetal 2018, O'Gorman & Dwyer 2018, Brenowitz & Bretherton (2018,2019), Brenowitz et al. (2020)



Previous study: we achieved physically consistent
parameterization that leads to stable and accurate simulations
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Neural network parameterization leads to accurate
simulation of mean precipitation

Mean precipitation

— _ « Stable simulation
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Latitude Yuval et al. (GRL, 2021)



Neural network parameterization leads to accurate
simulation of mean precipitation

Mean precipitation
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Goal: to use machine learning to develop physically-consistent
subgrid momentum parameterization from a fully 3D high-
resolution simulation

Machine learning
parameterization

Figure credit: NOAA

Figure credit: NASA
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Subgrid processes such as convection and gravity waves
transport horizontal momentum in the vertical

Convective momentum transport

Image credit: Joe Tribia presentation

E.g., Wuetal. (2007), Song et al. (2008),
Woelfle et al. (2018)



Subgrid processes such as convection and gravity waves
transport horizontal momentum in the vertical

Convective_ momentum_transport Gravity waves above the Indian Ocear

245 kilometers

378 kilometers
Image credit: NASA/GSFC/LaRC/JPL, MISR TEAM

E.g., Wu et al. (2007), Song et al. (2008), E.g., Dunkerton (1997), Ray et al. (1998),
Woelfle et al. (2018) Orretal. (2010)

Image credit: Joe Tribia presentaton



Convective momentum transport has large consequences for
the tropical atmospheric circulation and precipitation

Annual mean surface winds (observations) . ..
90 [ 12
1

Lotitude (deg)

Richter and Rasch (2007)
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Convective momentum transport has large consequences for
the tropical atmospheric circulation and precipitation
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Machine learning
parameterization

High resolution model
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Figure credit: NASA



« SAM model with hypohydrostatic rescaling
(grid spacing 12km, effective 3km)

* Prescribed sea-surface temperature distribution that
IS symmetric about the equator

Outgoing longwave

radiation shown SAM model: Khairoutdinov et al 2003
Hypohydrostatic/DARE: e.g. Kuang et al 2005
Original simulations thanks to Bill Boos and Alexey Federov







We coarse-grain high-resolution simulation to calculate the

contribution of subgrid momentum transport
Surface zonal wmd 96km (x8)
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We coarse-grain high-resolution simulation to calculate the
contribution of subgrid momentum transport

e ”‘ 96km wu
j —— Coarse grained momentum flux

from high resolution simulation
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We coarse-grain high-resolution simulation to calculate the

contribution of subgrid momentum transport
Surface zonal wind 96km (x8)
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We coarse-grain high-resolution simulation to calculate the

contribution of subgrid momentum transport
Surface zonal wind 96km (x8)

96km
Coarse grained momentum flux

from high resolution simulation
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Mean subgrid momentum fluxes are downgradient and
the neural network approximates well the mean fluxes

Offline results

Predicted zonal momentum subgrid flux

True zonal momentum subgrid flux
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Mean subgrid momentum fluxes are downgradient and
the neural network approximates well the mean fluxes

Offline results
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Calculated fluxes are similar to a simplified parameterization that
was fit to reanalysis, and NN accurately predict the mean fluxes

Reanalysis: mean residual momentum tendency scales like

a simple momentum convection parameterization
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Calculated fluxes are similar to a simplified parameterization that
was fit to reanalysis, and NN accurately predict the mean fluxes

Reanalysis: mean residual momentum tendency scales like
a simple momentum convection parameterization
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It is more difficult to predict subgrid momentum fluxes compared to subgrid

moisture fluxes
Offline performance

Subgrid zonal momentum flux
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It is more difficult to predict subgrid momentum fluxes compared to subgrid

moisture fluxes
Offline performance

Subgrid zonal momentum flux

— 0.7
a 300

< 0.5
y

3 600 0.3
()]

L 0.1
(a

900 o1
Latitude
Subgrid moisture flux

‘©

o

=,

v

)

(%]

(%]

)

| -

(a

Yuval and O'Gorman (ESSOAr preprint) Latitude



Why is it more difficult to predict subgrid momentum fluxes compared to

mOiStu re fl uxeS ? Mean fluxes and precipitation
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Why is it more difficult to predict subgrid momentum fluxes compared to
mOiSture ﬂUXGS? Mean fluxes and precipitation
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Why is it more difficult to predict subgrid momentum fluxes compared to
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Why is it more difficult to predict subgrid momentum fluxes compared to

Yuval and O'Gorman (ESSOAr preprint)

moisture fluxes?
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Why is it more difficult to predict subgrid momentum fluxes compared to
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Neural network parameterization of subgrid momentum transport
improves some characteristics of the atmospheric circulation

Surface meridional wind
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0 _ 45 CMT affects surface wind:
Latitude e.g., Richter and Rasch (2007),
Yuval and O'Gorman (ESSOAr preprint) Woelfle et al. (2018)



Neural network parameterization of subgrid momentum transport
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Neural network parameterization of subgrid momentum transport
improves some characteristics of the atmospheric circulation

Surface meridional wind
Stable simulation

N
I

High-res (target)

|

meridinal wind [m/s]

Low-res + NN (moisture and thermodynamic; no momentum)

0 _ 45 CMT affects surface wind.:
Latitude e.g., Richter and Rasch (2007),
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Neural network parameterization of subgrid momentum transport
improves some characteristics of the atmospheric circulation

Surface meridional wind
Stable simulation
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Neural network parameterization can also overestimate

the effect subgrid momentum transport
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* Physically-consistent neural-network
parameterization for subgrid momentum learned
from fully 3-D high-resolution simulation

* |t is challenging to predict subgrid momentum fluxes

« Machine-learning momentum parameterization +
atmospheric model at climate-model resolution ->
stable simulation and improve some characteristics
of the atmospheric circulation
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Substantially better performance when predicting the
absolute value of momentum fluxes

) Zonal momentum flux
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