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Probabilistic post—processgof NWP frecasts .

e What is the conditional distribution of the Copula methods
target variable Y given the NWP forecasts x? :> e Ensemble copula coupling
e Distributional regression e (Observation based (Schaake shuffling)

o Estimate Y | x and use it for prediction
e Multiple variables (space/time) can be
estimated simultaneously

Scenario / multivariate methods

Conditional GANs
Variational autoencoders
Normalizing flows

— 0l e == W 4 ] =

i

B0 I O — 05 e EH BN T 22 E1 S o= im ¥l



Desired properties of (uniaiate) pos—procssi methods

e Flexible forecast distributions
o to represent the underlying forecast uncertainty in
all weather situations

e Handle many input variables/features/covariates

o ensemble of multiple variables in space/time
o additional variables

e Flexible relations between input variables and forecast
distribution
o multivariate function needed
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Desired properties of (uniaiate) post—processi methods

e Flexible forecast distributions

o to represent the underlying forecast uncertainty in :> Bernstein quantile distribution
all weather situations

e Handle many input variables/features/covariates [

o ensemble of multiple variables in space/time
o additional variables

Neural networks

e Flexible relations between input variables and forecast

distribution :> Neural networks
o multivariate function needed
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Discretization / Quantization
e Probability for each category / bin
o Training with cross-entropy loss /
multinoulli likelihood
e How to discretize? Balancing of data?

Discrete model + continuous model
e Model for probability of precipitation
e Model for precipitation amounts given
occurrence of precipitation
o Training on precipitation cases only
e Combine the two using laws of probability for
prediction

How to model precipitatio dealing ith the zeros?

Censored continuous approach

Motivation from survival analysis

Treat the zeros as censored values

Introduce a latent precipitation variable that can
take negative values

Continuous model, but loss function needs to
account for zeros
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Definition of Bernstein quantile function distribution

Bernstein basis polynomials of degree d=8
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Note: The coefficients are functions of the input variables, here neural networks
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quantile function
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How to ensure non-decreasing quantile functions?

e If the Bernstein coefficients are non-decreasing, then the quantile function is also non-decreasing.
Introduce a reparameterization

/30 = Qy
Bi = a;—0;—1 20, 1€{1,...,d}

where the Bs are the output from the neural net, or ...

e just swap quantiles (or coefficients) if necessary
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Training / parameter estiaion

Minimize quantile loss over a set of quantile levels

quantile loss function

- observation ;
training cases quantlle levels covariates

quantile function /
\ / / u(t—1) u<0
mln Z Z th Tf ‘xl pf(u> =

=1r=1 [ UT u >0

quantile level

Note! Replacing sum over levels by integration — CRPS optimization
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Censored linear quantile regression for a single quantile (1)

Chernozhukov and Hong (2002); Friederichs and Hense (2007)

1.
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Create model for predicting probability of precipitation (e.g. logistic regression)
Create new training data set for cases where predicted pop > 1-1

Fit quantile regression model

Create new training data set for cases where fitted quantile > 0

Fit quantile regression model

Repeat step 4 and 5 (optional)
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Adaptation to BQN — cenod BON

Challenges in generalization to multiple quantiles
e Data points can in general no longer be left out of the training set in advance
o For each data point the loss must be computed over a varying number of quantile levels
e Neural network training (epochs, random mini-batches)

Censored BQN approach
e Make a model for predicting prob. of precipitation by either
o Creating NN model with cross-entropy loss, or
o Using the ensemble prob. of precipitation
e 1stepoch of BQN training
o Compute quantile loss only over levels (1) and cases (x) where pop(x) >1 -7, VX,
e Remaining epochs
o Compute quantile loss only over levels (1) and cases (x) where Q(z|x) > 0, VX,z
Note: Q(z]x) is allowed to be negative, but truncated at zero for prediction
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quantile level

25 50 75
case in mini-batch
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quantile level
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case in mini-batch
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Example: Synthetic preciittion data

Data from truncated shifted Gamma distribution
e Observation and 11 ensemble members generated by
Gamma(mean = M, varians = M*U) - s

@)

@)

e Data sets

@)

@)

@)

@)

@)

@)

@)

M ~ Gamma(mean = 5, var = 5)

U ~ Uniform(0.75, 1.25)

s is chosen such that desired fractions of
zeros is obtained (60%, 80%, 90%)
Truncation at zero

Ensemble members — 3 covariates

@)

@)

@)

Probability of precipitation
Ensemble mean
Ensemble standard deviation

50,000 cases for training
50,000 cases for model validation/selection
100,000 cases for testing

Models
e NN for pop + BQN for precipitation amounts on
precipitation cases
e BQN without censoring to account for zeros
o predictions truncated at zero
e Censored BQN with NN pop (1st epoch)
e Censored BQN with ensemble pop (1st epoch)

Method details

e Bernstein polynomials of degree 12

e Neural networks with one hidden layer (32 nodes)
o cross-entropy loss for pop.
o (censored) quantile loss averaged over levels

0.01, 0.02, ..., 0.99 for BQN

o batchsize 128, initial learning rate 0.001 (ADAM)
o best model over 100 epochs chosen
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Quantile Skill Score (%)

Brier Skill Score (%)

overall 95% Ens. median | Ens. median overall Ens. median
equal 0.0 upper 1% equal 0.0
PoP + Amount models -4.82 -1.12 -10.02 -4.37 -5.15 -6.61 -6.92
No censoring -4.96 -1.51 -9.98 -4.70 -5.53 -56.14 -75.64
Censoring w/ens. pop -4.80 -1.02 -9.80 -4.37 -5.33 -6.57 -6.88
Censoring w/pop model -4.84 -1.01 -9.89 -4.39 -5.38 -6.62 -6.95
Data-generating distribution as reference forecast
High scores best
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Quantile Skill Score (%)

Brier Skill Score (%)

Ens. median | Ens. median Ens. median
o 0 "
overall 5% 95% equal 0.0 upper 1% overa equal 0.0
PoP + Amount models -4.82 -0.40 -14.45 -4.59 -5.78 -6.92 -7.05
No censoring -5.22 -0.81 -15.41 -5.12 -5.78 -124.48 -152.10
Censoring w/ens. pop -4.86 -0.38 -14.54 -4.61 -5.97 -6.97 -7.06
Censoring w/pop model -4.82 -0.41 -14.39 -4.60 -5.81 -6.97 -7.05
Data-generating distribution as reference forecast
High scores best
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Quantile Skill Score (%)

Brier Skill Score (%)

overall 5% 95% Er;z.ur;ﬁleg i(.)an EE;b:ref!Zn overall Er;z.ur;ﬁle; igm
PoP + Amount models -4.70 -0.35 -16.75 -4.52 -6.24 -7.09 -7.14
No censoring -5.24 -2.95 -16.51 -5.17 -6.49 -158.65 -175.68
Censoring w/ens. pop -4.70 -0.35 -16.41 -4.52 -6.59 -6.85 -6.88
Censoring w/pop model -4.66 -0.31 -16.57 -4.53 -6.46 -6.83 -6.88
Data-generating distribution as reference forecast
High scores best
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A

Data
e At 48 Norwegian stations
e 00+42, +90, +138h 11-member forecasts
e 2010-2019 (2018 for validation and 2019 for testing)
e |nput variables

o Site id (discrete embedded)

o Ensemble means of total precipitation, convective
precipitation, total column cloud liquid water, CAPE,
wind speed 700 hPa

o Standard deviation of total precipitation

o Probability of precipitation (total)

Example: 6h-precipitatin foecasting with ECMWF ENS reforecasts
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Models
e NN for pop + BQN for precipitation amounts on precipitation
cases

e BAQN without censoring to account for zeros
o predictions truncated at zero
e Censored BQN with NN pop (1st epoch)
e Censored BQN with ensemble pop (1st epoch)

Method details

e Bernstein polynomials of degree 12
e Neural networks with one hidden layer (32 nodes)
o cross-entropy loss for pop.
o (censored) quantile loss averaged over levels 1/12,
2/12, ..., 11/12 for BQN
o embedding of size 6 for site id
o batchsize 128, initial learning rate 0.001 (ADAM)
o __best model over 250 epochs chosen
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Quantile Score Brier Score
overall 5% 95% El;ljuranleg ioan Ell:lfprenre1dcj/?n overall E:c?ur;eod_ ioan
PoP + Amount models 0.2215 0.0097 2.0381 0.1441 0.0767
No censoring 0.2218 0.0099 2.0386 0.6092 0.9158
Censoring w/ens. pop 0.2233 0.0093 2.0186 0.1479 0.0736
Censoring w/pop model 0.2224 0.0093 2.0170 0.1476 0.0743
ECMWEF ENS ref. 0.2907 0.0095 2.5040 0.3758 0.1008

Lower scores best
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Quantile Score Brier Score
overall 5% 95% El;ljuranleg ioan Ell:lfprenre1dcj/?n overall E:c?ur;eod_ ioan
PoP + Amount models 0.2577 0.0133 1.4959 0.1861 0.0835
No censoring 0.2579 0.0136 1.5407 0.5721 0.7804
Censoring w/ens. pop 0.2598 0.0130 1.5022 0.1831 0.0796
Censoring w/pop model 0.2576 0.0130 1.4720 0.1819 0.0798
ECMWEF ENS ref. 0.3039 0.0146 1.7966 0.3697 0.1037

Lower scores best
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Quantile Score Brier Score
overall 5% 95% El;ljuranleg ioan E[:lfprenref:/?n overall E:c?ur;eod_ ioan
PoP + Amount models 0.3579 0.0658 2.7449 0.2076 0.1157
No censoring 0.3597 0.0666 2.7751 0.5839 0.7864
Censoring w/ens. pop 0.3607 0.0656 2.7566 0.2007 0.1136
Censoring w/pop model 0.3612 0.0657 2.7753 0.2023 0.1158
ECMWEF ENS ref. 0.4061 0.0711 3.1505 0.3544 0.1372

Lower scores best
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Concluding remarks

Conclusions (preliminary)
e Post-processing models need to handle the zeros in a proper way
e Similar verification results/scores for discrete+continuous approach and censored BQN (as expected)
e Censored BQN
o Separate model for probability of precip. seems not necessary, ensemble can be used
o Implementation by a slight adjustment of the BQN training loop

Current and future work
e Apply to gridded precipitation data (MAELSTROM project)
o focus on computational issues on very large datasets (~10 TB)
e Compare with discretized approaches (cross-entropy models)
o in particular for extreme weather
e How does relative forecast skill depend on the size of training data?
o Variations between methods?
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