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Motivation
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 Downward long-wave radiation (DLR) is essential to: Earth’s surface energy balance, heat exchange fluxes, climate variability and global warming
calculations;

 DLR is highly dependent on the vertical profiles of atmospheric temperature and, most noticeably, water vapour. Clouds significantly influence DLR
variability by increasing the total effective emissivity of the sky;

 Semi-empirical, physical and hybrid (physical + remote sensed data) models have some degree of dependency with factors that hinder their accuracy
(particular calibration conditions, quality and availability of atmospheric profiles database and satellite information accuracy);

Objectives

 Review of LSA-SAF DLR algorithm (Trigo et al. 20101): reanalysis integration with new atmospheric profiles database (ERA5) for the same
conditions (periods, locations) used in the original calibration, i.e. TIGR-like database (Chevallier et al. 20002) heavily based on ERA-40 and
MODTRAN4 fluxes;

 A new formulation is proposed: combination of reanalysis (ERA5), ground (BSRN+ARM) and remote sensed (MSG) data with a machine learning
model that uses Multivariate Adaptive Regression Splines (MARS);

 Benchmarking and validation of proposed methodology against other models estimates and several ground stations within MSG-disk;



3

ESA-ECMWF Workshop 2021

Multivariate Adaptive Regression Splines - MARS

 A non-parametric technique that automatically builds a model having
into account nonlinearities;

 Belongs to a group of regression algorithms used to predict continuous
(numerical) variables;

 Makes use of hinge functions* with the form max(0, x-cte) or max(0, cte-
x) that can model interaction between two or more variables, where cte
are the ”knots” of the hinge functions;

 MARS 2-stage building process: forward and backward pass;

Forward pass
• Adds repeatedly basis functions in pairs;
• Finds pair of basis functions with maximum 

reduction in sum-of-squares residual error;
• Searches all combinations;
• Calculates coefficient of each term, a linear 

regression over terms is applied;
• Process stops when residual error is very small 

or when max. number of terms is reached;

Backward pass
• Compensates the forward pass (usually builds an overfit

model that is good to the data but not to the new data);
• Removes terms one by one (pruning), deleting the least 

effective term at each step;
• Subsets are compared using the general cross-

validation (GCV) criteria;
• Has the advantage to choose any term to delete, while 

forward pass only sees next pair of terms at each step;

(Training set)
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Fig. 2 – MARS belongs to the family of machine learning algorithms.

*Hinge function:
h(x-c) = max(0, x-c) = {x−c, if x>0; and 0, if x≤c},
where c is a constant also known as a knot

MARS main reference: JHFriedman. Multivariate adaptive 
regression splines. The annals of statistics, 19(1):1–67, 1991.
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MARS – ERA5 Integration

• ERA5 data extraction (https://cds.climate.copernicus.eu);

• ERA5 hourly outputs: total column water vapour (tcwv), 2-metre air temperature
(t2m), 2-metre dewpoint temperature (d2m), surface thermal radiation downwards
(strd), and total cloud cover (tcc);

• MARS calibration with ERA5 database:

• Predictand: strd fluxes;

• Predictors: tcwv, t2m and d2m;

• Sky conditions definition: tcc

Clear: tcc = 0
Cloudy: tcc > 0.9

Clear Sky Cloudy Sky

Predictors µ RMSD µ RMSD

tcwv, t2m, d2m 0.3 7.9 -0.1 16.1

tcwv, t2m 0.4 8.9 -0.3 16.4

tcwv -0.8 24.7 -1.0 21.2

tcwv, d2m -0.7 23.5 -0.2 16.9

t2m, d2m 0.3 13.1 0.9 18.5

t2m 0.6 20.5 1.0 21.5

d2m -1.0 32.2 0.7 19.2

Table 1 – Predictors assessment for MARS calibration. Bias (µ) and root mean 
square error (RMSE) are depicted (W.m-2). Analysis performed against ERA5 
fluxes during a period of ~4.6 years (1994-1995, 2004-2005 and 2014-2015). 

https://cds.climate.copernicus.eu)/
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Observational dataStation Network Location Lat. and Lon. Elev. Years Annual DLR

Brasilia BSRN Brazil 15.60˚S; 47.71˚W 1023 44.47 364.45

Budapest BSRN Hungary 47.43˚N; 19.18˚E 139 0.51 373.82

Cabauw BSRN Netherlands 51.97˚N; 4.93˚E 0 91.76 323.69

Camborne BSRN U.K. 50.22˚N; 5.32˚W 88 72.70 324.57

Carpentras BSRN France 44.08˚N; 5.06˚E 100 88.39 321.74

Cener BSRN Spain 42.82˚N; 1.60˚W 471 64.17 321.71

De Aar BSRN South Africa 30.67˚S; 23.99˚E 1287 39.05 303.88

Eastern North Atlantic BSRN Azores 39.09˚N; 28.03˚W 15.2 6.24 359.34

Florianopolis BSRN Brazil 27.61˚S; 48.52˚W 11 35.62 386.40

Gandhinagar BSRN India 23.11˚N; 72.63˚E 65 9.85 401.45

Gobabeb BSRN Namibia 23.56˚S; 15.04˚E 407 47.12 338.67

Neumayer BSRN Antarctica 70.65˚S; 8.25˚W 42 92.28 216.87

Niamey ARM Africa 13.48˚N; 2.18˚E 223 6.36 392.11

Lindenberg BSRN Germany 52.21˚N; 14.12˚E 125 87.36 315.06

Palaiseau BSRN France 48.71˚N; 2.21˚E 156 97.61 322.61

Paramaribo BSRN Suriname 5.81˚N; 55.22˚W 4 3.63 421.16

Payerne BSRN Switzerland 46.82˚N; 6.94˚E 491 98.04 315.05

Petrolina BSRN Brazil 9.07˚S; 40.32˚W 387 47.25 386.86

Sede Boqer BSRN Israel 30.86˚N; 34.78˚E 500 46.80 332.86

São Martinho da Serra BSRN Brazil 29.44˚S; 53.82˚W 489 37.74 327.19

Sonnblick BSRN Austria 47.05˚N; 12.96˚E 3109 39.23 249.07

Tamanrasset BSRN Algeria 22.79˚N; 5.53˚E 1385 99.17 330.70

Toravere BSRN Estonia 58.25˚N; 26.46˚E 70 98.05 308.71

Table 2 – Ground stations used. Name, network of origin, geographical coordinates 
(˚), elevation (m), years available (i.e. % of available data, in years, between 2004 
and 2019), and annual mean DLR (W.m-2.year-1).  

Fig. 3 – Annual mean (2020) DLR at surface estimated with the LSA-SAF 
operational algorithm within the MSG-disk. Depiction of all 23 measuring 

stations (green triangles) used for the validation of MARS estimates comprising 
a 16-year period of study (from 2004 to 2019). 
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Models description
• MARS_MOD: ~4.6 years of ERA5 (tcwv, t2m, d2m as predictors and strd as predictand) to calibrate the model;

• LSA_MOD: ~4.6 years of ERA5, same inputs as for MARS_MOD but using operational algorithm;

• MARS_OBS: ~10.4 years of measured data (random selection of 6 months of data from each of the 23 stations) + ERA5; stations with less
than 6 months provide 40% of data instead;

• LSA_OBS: ~10.4 years of measured data + ERA5, same inputs as for MARS_OBS but using operational algorithm;

• LSA_OPER: ~1.5 years of TIGR-like database (ERA40) + MODTRAN4 fluxes;

• ERA5: direct output - surface thermal radiation downwards (strd);

Acronym Model Predictors Predictand Cloud info. Calibration period

MARS_MOD
LSA_MOD

MARS
LSA tcwv, t2m, d2m (ERA5) strd (ERA5) tcc (ERA5) 1992-1993, 2002-2003, 2012-2013 

MARS_OBS
LSA_OBS

MARS
LSA tcwv, t2m, d2m (ERA5) BSRN + ARM cma (MSG) 2004-2019

LSA_OPER LSA tcwv, t2m, d2m (ERA40) MODTRAN4 tcc (ERA-40) 1992-1993

ERA5 Reanalysis - - - -

Table 3 – List of models and 
respective calibration inputs used in 
the analysis.  
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Results – ERA5 integration + MARS

 Better adjustments to ERA5 fluxes are obtained with 
MARS_MOD under clear and cloudy sky conditions;

 ”S” shape curve from the operational product is 
mostly related to TIGR-like database and MODTRAN-
4 fluxes used in original calibration. LSA model with 
ERA5 (LSA_MOD) eliminates this feature;

 MARS deviations under cloudy periods: related to 
the misrepresentation of clouds in ERA5, i.e. total 
cloud cover (used for sky classification); 

 More accurate cloud information can be used from 
satellites to define sky conditions: e.g. MSG cloud 
mask (cma);

 Further validation of MARS estimates using ground 
measurements;

b)a) c)

d) e) f)

LSA_OPER LSA_MOD MARS_MOD

progression

Fig. 4 - Benchmarking (1994-1995, 2004-2005 and 2014-2015) 
for: (a, d) LSA_OPER; (b, e) LSA_MOD; (c, f) MARS_MOD.
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Results – MARS validation

 Models that use measured data seem to have better 
performance (MARS_OBS, LSA_OBS);

 Use of MARS to estimate DLR values at surface 
provides better adjustments to observations;

 Higher errors: ERA5; 

 ERA5 overall underestimation is transferred into 
MARS and LSA models (MARS_MOD, LSA_MOD), 
being reduced in MARS_OBS;

 LSA_OPER overall underestimation due to original 
calibration (TIGR-like, MODTRAN-4);

Fig. 5 - DLR fluxes (W.m-2) for all, clear and cloudy sky conditions 
from all models vs. hourly observations from 23 stations.
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Results – MARS validation

a) b) d)c)

Fig. 6 - Boxplots for all sky conditions considering different error metrics, i.e. bias (µ), deviation (σ), RMSE, and Pearson’s correlation (R), found in all measuring stations for each 
model. Validation period: between 2004-2019.

 Statistical summary (all sky): hourly data from all measuring stations in all model variants; 

 Lower errors: MARS calibrate with measured data;

 Higher errors: ERA5 Reanalysis (related to cloud representation);

 Outliers occurrence in all models: GVN, SON, SMS stations (high latitudes, high altitudes, possible measuring equipment malfunction); 
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Results – Spatial distribution

MSG-disk mapping:

• Annual mean differences (2020);

 Spatial variation is consistent between all models;

 Dominant gradients: higher values in tropics and lower values in
high latitudes;

 Systematic differences are observed: e.g. higher altitudes (ERA5)
and higher latitudes (LSA_OPER);

 MARS_OBS smaller differences towards LSA_OPER with slight
underestimation within the tropics;

Fig. 7 - DLR (W.m-2) mapping: annual means 2020.
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Results – Spatial distribution

MSG-disk mapping:

• Seasonal mean differences 2020 (DJF);

 High agreement among all models with respect to seasonality;

 LSA_OPER increases underestimation towards other models estimates
where lower values of DLR fluxes occur (e.g. eastern Europe);

Fig. 8 - DLR (W.m-2) mapping: seasonal (DJF) means 2020.
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Results – Spatial distribution

MSG-disk mapping:

• Seasonal mean differences 2020 (MAM);

 High agreement among all models with respect to seasonality;

 Increase of DLR fluxes, particularly in northern Africa and
Europe; in comparison with LSA_OPER, the error decrease in
these regions, except ERA5 (general underestimation);

Fig. 9 - DLR (W.m-2) mapping: seasonal (MAM) means 2020.
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Results – Spatial distribution

MSG-disk mapping:

• Seasonal mean differences 2020 (JJA);

 High agreement among all models with respect to seasonality;

 Higher increase of DLR fluxes in northern Africa and Europe,
and higher decrease in southern Africa (very small differences
between all models);

Fig. 10 - DLR (W.m-2) mapping: seasonal (JJA) means 2020.
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Results – Spatial distribution

MSG-disk mapping:

• Seasonal mean differences 2020 (SON);

 High agreement among all models with respect to seasonality;

 Decrease of DLR fluxes in northern hemisphere and increase in
southern hemisphere;

 Similar spatial variation between all models in comparison to
spring spatial variation;

Fig. 11 - DLR (W.m-2) mapping: seasonal (SON) means 2020.
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Conclusions

Summary

• LSA-SAF operational product calibrated with ERA5 atmospheric profiles database seems to provide better adjustments for DLR fluxes instead of
using the original calibration (ERA-40, MODTRAN-4); Better description of near surface variables and radiation fluxes;

• Overall, MARS performs well, particularly when measured data is used for calibration;

• DLR fluxes maps (MSG-disk) show a general consistency between all model estimates, in particular MARS_OBS shows a higher approximation
to the LSA-SAF operational product than the remaining models;

Future work

• Improvements should be expected in the future with the replacement of McRad radiation scheme (currently operational in the ERA5
reanalysis) by the ecRad scheme;

• Other MARS variants can be tested with a new configuration of predictors, e.g. use of satellite measured thermal infrared bands top of
atmosphere radiances for calibration, similarly to (Zhou et al., 20183);
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