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Evolution of technology:
- Statistics -> Machine Learning;
- Field work -> Cloud-based sensor networks;
- Small data -> Big geospatial data (VVV);
- Printed maps -> AR/VR;

Social / organizational evolution:
- Local studies -> regional / global datasets;
- Printed papers -> reproduc. research (docker);

Personal evolution:
- 2D -> 3D+T;
- Manual processing -> automated mapping;
- Statistician -> Data Scientist;
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My talk in a nutshell: simple evolution of things
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Assuming that we could collate ALL measurements of 
a particular variable of interest, we could fit a single 
global model that explain dynamics / variation of 

the variable over the whole globe (“one model to rule 
them all”).

Imagine for example precipitation [in mm] 
(hourly, daily), if we had the data from all stations 
all measurements ever made (possibly Billions of 
measurements), if we use all computers in the world, 
fit a spacetime model to this dataset, then this could 

become “the best” the most accurate model to 
represent rainfall (hence all our knowledge of rainfall 

could be converted to a single ML/AI system). We 
could apply similar rules to basically any field in 

physical geography.
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About 20 years ago -> Geostatistics
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Source: 
https://wiki.52north.org/AI_GEO
STATS/EventsSIC97 

https://wiki.52north.org/AI_GEOSTATS/EventsSIC97
https://wiki.52north.org/AI_GEOSTATS/EventsSIC97
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Meuse dataset (Zn concentration in soil)
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Ordinary kriging with log-normal distribution (geoR): needs many 
parameters to be set (manually)
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zinc.vgm <- likfit(zinc.geo, lambda=0, 
ini=c(var(log1p(zinc.geo$data)),500), cov.model="exponential")
zinc.ok <- krige.conv(zinc.geo, locations=locs, 
krige=krige.control(obj.m=zinc.vgm))

krige.conv: model with constant mean
krige.conv: performing the Box-Cox data transformation
krige.conv: back-transforming the predicted mean and variance
krige.conv: Kriging performed using global neighbourhood
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Random Forest on buffer distances
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grid.dist0 <- buffer.dist(meuse["zinc"], meuse.grid[1])
dn0 <- paste(names(grid.dist0), collapse="+")
fm0 <- as.formula(paste("zinc ~", dn0))
ov.zinc <- over(meuse["zinc"], grid.dist0)
m.zinc <- ranger(fm0, cbind(meuse@data["zinc"], ov.zinc))
zinc.rfd <- predict(m.zinc, grid.dist0@data)
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Is ML the end of Geostatistics?
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Conclusion: many modern 
Machine Learning 
techniques (especially 
tree-based) are universally 
applicable for general 
modeling purposes
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PeerJ article
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From a single model -> Ensemble Machine Learning
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"Ensemble methods are 
meta-algorithms that combine 
several machine learning 
techniques into one predictive 
model in order to decrease variance 
(bagging), bias (boosting), or 
improve predictions (stacking)."
https://blog.statsbot.co/ensemble-l
earning-d1dcd548e936 

This however comes at costs:
- higher computational load,
- higher RAM requirements,

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
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https://github.com/Envirometrix/landmap 
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Conclusion: many 
modern Machine 
Learning techniques are 
applicable for general 
spatial prediction 
purposes

Default learners: ranger 
(RF), xgboost, 
cvglmnet, cubist, SVM

https://github.com/Envirometrix/landmap
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RF vs EML
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Ensemble Machine Learning helps with extrapolation problems
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Going global
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Next frontier -> spacetime predictive mapping
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Daily 
temperatures + 
MODIS LST

[Hengl et al. 2014]

http://cran.r-project.org/web/packages/plotKML/vignettes/jss1079.pdf
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Need for global data
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https://www.nature.com/articles/d41586-019-00669-x
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Need for global data
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https://openlandmap.org 
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https://openlandmap.org
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https://gitlab.com/openlandmap/compiled-ess-point-data-sets/ 
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https://gitlab.com/openlandmap/compiled-ess-point-data-sets/
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MOD13Q1 EVI - Aggregated (2 months) and gap-filled

23

0.80 126 x 160,300 x 65,200
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Global spatiotemporal models
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Global spatiotemporal models
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Global spatiotemporal models
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Global spatiotemporal model = geometric temperature
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temp.from.geom <- function(fi, day, a=30.419375, 
                b=-15.539232, elev=0, t.grad=0.6) {
  f = ifelse(fi==0, 1e-10, fi)
  costeta = cos( (day-18 )*pi/182.5 + 2^(1-sign(fi) ) *pi) 
  cosfi = cos(fi*pi/180 )
  A = cosfi
  B = (1-costeta ) * abs(sin(fi*pi/180 ) )
  x = a*A + b*B - t.grad * elev / 100
  return(x)
}

https://gitlab.com/geoharmonizer_inea/odse-workshop-2021/-/tree/
main/R-training

https://gitlab.com/geoharmonizer_inea/odse-workshop-2021/-/tree/main/R-training
https://gitlab.com/geoharmonizer_inea/odse-workshop-2021/-/tree/main/R-training
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Environmental Data Cube for Europe: https://maps.opendatascience.eu 

29

All layers published and served 
as Cloud-Optimized GeoTIFFS 
(Wasabi S3),

Metadata available via 
Geonetwork (still working on 
the STAC version),

https://maps.opendatascience.eu
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eumap package for python (http://eumap.readthedocs.org/) 
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http://eumap.readthedocs.org/
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https://www.researchsquare.com/article/rs-561383/v2 
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https://www.researchsquare.com/article/rs-561383/v2
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Harmonizing, integrating (binding) global Observation & Measurement data (spacetime points) make sense (at 
least to me) as it enables global research / could help with global monitoring projects.

Ensemble Machine Learning is a universally applicable framework for modeling spacetime phenomena, 
spatiotemporal interpolation and uncertainty assessment.

Yes, potentially, we could put ALL Earth System Science O&M and ALL EO data cubes together, and build 
spacetime models that basically put all our measurements together into a single and/or few HUGE model 
(something like IPCC reports, just models / code!). The advantages of such model are:

● It would help produce an unbiased picture;
● It would probably give highest accuracy + could be used to predict future;

Some disadvantages of such models:

● They are super large and would take enormous computing power to update and share;
● They need all data to be consistent and to be available for all pixels of interest;
● Many researchers would need to work together;
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Conclusions I
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Unfortunately, we (researchers) are “pushed” by the current profit-oriented economic system to compete with each 
other (research funding, publications, diverging national programmes).

It is difficult to do research without funding (of course) and majority of funding sources for research are national or 
regional (we even compete within the same institutions!).

For example, ESA and NASA collaborate, but if the researchers could have decided about the amount of 
collaboration, 90% of missions would have probably been = joint missions! We researchers do NOT 
necessarily need competition -> we are primarily interested in understanding, educating, creating and enjoying 
complexity.

Think about how you can help produce better OpenStreetMap, OpenLandMap, Open Source software, 
Open Data projects, because competition is a good/healthy thing, but collaboration is even better!
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Conclusions II
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Our especial interest: enabling global research / Open Data Science
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