

International Max Planck Research School on Earth System Modelling

ESA-ECMWF Machine Learning for Earth System Observation and Prediction Workshop 2021

Self-Attentive Ensemble Transformer: Representing Ensemble Interactions in Neural Networks for Earth System Models

Tobias Sebastian Finn

Why do we need to post-process ensemble simulations?

Why do we need to post-process ensemble simulations?

Model bias

Mean error in 2-metre-temperature of the IFS-EPS ensemble mean to the ERA5-reanalysis on a bilinearly regridded grid for 2019

Why do we need to post-process ensemble simulations?

Model bias

Mean error in 2-metre-temperature of the IFS-EPS ensemble mean to the ERA5-reanalysis on a bilinearly regridded grid for 2019

Uncalibrated forecast

Rank histogram in 2-metre-temperature of the IFS-EPS compared to the ERA5-reanalysis for all grid points and the year 2019

Why do we need to post-process ensemble simulations?

Y

Model bias

Mean error in 2-metre-temperature of the IFS-EPS ensemble mean to the ERA5-reanalysis on a bilinearly regridded grid for 2019

Uncalibrated forecast

Rank histogram in 2-metre-temperature of the IFS-EPS compared to the ERA5-reanalysis for all grid points and the year 2019

+ Forecast non-modelled variables

	Raw Ensemble	
Bias correction	×	
Calibration	×	
Non-parametric	✓	
Correlations	✓	

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)
Bias correction	×	
Calibration	×	
Non-parametric	✓	
Correlations	\checkmark	

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)
Bias correction	×	✓
Calibration	×	\checkmark
Non-parametric	\checkmark	×
Correlations	1	×

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	
Bias correction	×	✓		
Calibration	×	\checkmark		
Non-parametric	1	×		
Correlations	✓	×		

Let's use neural networks to correct the model bias How to incorporate ensemble information?

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	
Bias correction	×	\checkmark	✓	
Calibration	×	\checkmark	\checkmark	
Non-parametric	1	×	~	
Correlations	✓	×	?	

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	Direct
Bias correction	×	\checkmark	\checkmark	
Calibration	×	\checkmark	\checkmark	
Non-parametric	1	×	~	
Correlations	✓	×	?	

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	Direct
Bias correction	×	\checkmark	\checkmark	✓
Calibration	×	\checkmark	\checkmark	×
Non-parametric	✓	×	~	\checkmark
Correlations	1	×	?	?

Let's use neural networks to correct the model bias How to incorporate ensemble information? Use self-attention similar to ensemble data assimilation → Self-attentive ensemble transformer

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	Direct	Transfromer (This talk)
Bias correction	×	\checkmark	\checkmark	√	
Calibration	×	\checkmark	\checkmark	×	
Non-parametric	\checkmark	×	~	√	
Correlations	\checkmark	×	?	?	

Let's use neural networks to correct the model bias How to incorporate ensemble information? Use self-attention similar to ensemble data assimilation Self-attentive ensemble transformer

	Raw Ensemble	PPNN (Rasp & Lerch, 2018)	Bernstein (Bremnes, 2020)	Direct	Transfromer (This talk)
Bias correction	×	✓	\checkmark	√	1
Calibration	×	\checkmark	\checkmark	×	✓
Non-parametric	1	×	~	1	✓
Correlations	1	×	?	?	(~)

Self-attentive ensemble transformer combines ideas from data assimilation and NLP

Ensemble-based data assimilation

Natural language processing

Self-attentive ensemble transformer combines ideas from data assimilation and NLP

Ensemble-based data assimilation

1711 2021

Self-attentive ensemble transformer combines ideas from data assimilation and NLP

Ensemble-based data assimilation

Natural language processing

17.11.2021

Self-attentive ensemble transformer combines ideas from data assimilation and NLP

Geopotential Temperature on 500 hPa on 850 hPa 2-metre-temperature IFS-EPS (50 members, lead time: 48 h)

ERA5 reanalysis

2-metre-temperature

GeopotentialIemperatureon 500 hPaon 850 hPaIFS-EPS (50 members, lead time: 48 h)

ERA5 reanalysis

2-metre-temperature

Global regression with convolution neural networks

GeopotentialTemperature
on 500 hPa2-metre-temperatureon 500 hPaon 850 hPa2-metre-temperatureIFS-EPS (50 members, lead time: 48 h)

1 × 1 Convolution
Embedding layers
Identity mapping

Ensemble transformer

Ensemble transformer

2017 & 2018: Training and validation (10 %) 2019: Testing

Optimizer: Adam

Loss: Latitudinal-weighted continuous ranked probability score (CRPS) for Gaussians

- 2017 & 2018: Training and validation (10 %) 2019: Testing
- Optimizer: Adam
- Loss: Latitudinal-weighted continuous ranked probability score (CRPS) for Gaussians
- Subsampled ensemble members for each training step:

2017 & 2018: Training and validation (10 %) 2019: Testing

Optimizer: Adam

Loss: Latitudinal-weighted continuous ranked probability score (CRPS) for Gaussians

Subsampled ensemble members for each training step:

	RMSE (K)	Spread (K)
10 samples	0.91	0.91
20 samples	0.92	0.90
50 samples	0.92	0.89

2017 & 2018: Training and validation (10 %) 2019: Testing

Optimizer: Adam

Loss: Latitudinal-weighted continuous ranked probability score (CRPS) for Gaussians

Subsampled ensemble members for each training step:

	RMSE (K)	Spread (K)	
10 samples	0.91	0.91	Increased noise during training
20 samples	0.92	0.90	+
50 samples	0.92	0.89	Increased training speed

Results for the whole year 2019

Results for the whole year 2019

RMSE (K)	Spread (K)

Results for the whole year 2019

	RMSE (K)	Spread (K)
IFS-EPS	1.12	0.73

PPNN scales slightly with number of layers

		RMSE (K)	Spread (K)
Parametric approach (Rasp & Lerch, 2018)	IFS-EPS	1.12	0.73
	PPNN (1)	0.95	0.87
	PPNN (5)	0.93	0.87

Direct approach without self-attention has problems

		RMSE (K)	Spread (K)
	IFS-EPS	1.12	0.73
Parametric approach (Rasp & Lerch, 2018)	PPNN (1)	0.95	0.87
	PPNN (5)	0.93	0.87
Apply NN to each member independently	w/o Self-Attention (1)	0.95	0.70
	w/o Self-Attention (5)	0.96	0.70

Transformer has lowest error and best spread-skill ratio

		RMSE (K)	Spread (K)
	IFS-EPS	1.12	0.73
Parametric approach (Rasp & Lerch, 2018)	PPNN (1)	0.95	0.87
	PPNN (5)	0.93	0.87
Apply NN to each member independently	w/o Self-Attention (1)	0.95	0.70
	w/o Self-Attention (5)	0.96	0.70
	Transformer (1)	0.91	0.91
	Transformer (5)	0.90	0.90

Self-attention can extract additional information from ensemble data + helps to calibrate the ensemble

Probability integral transform diagram to check ensemble calibration

Raw IFS ensemble clearly underdispersive + model bias

PPNN calibrates the ensemble

PPNN and Transformer are similarly good calibrated

Cold wave in North America – 2019-01-26 12:00 UTC

Perturbations of single members

Cold wave in North America – 2019-01-26 12:00 UTC

Cold wave in North America – 2019-01-26 12:00 UTC

Self-attention can explain itself and create informative maps

Attention maps for 2019-09-01 12:00 UTC

Self-attention can explain itself and create informative maps

Attention maps for 2019-09-01 12:00 UTC

Self-attention can explain itself and create informative maps

Attention maps for 2019-09-01 12:00 UTC

But repetitive heads!

- Self-attention can be used to improve post-processing for Earth system models
- \rightarrow Extraction of additional information \rightarrow Reduced error
- \rightarrow Calibration of ensemble for improved uncertainty estimation

Self-attention can be used to improve post-processing for Earth system models

- \rightarrow Extraction of additional information \rightarrow Reduced error
- \rightarrow Calibration of ensemble for improved uncertainty estimation

The ensemble transformer enables member-by-member post-processing with neural networks

→ Non-parametric processing of ensemble members without aggregated statistics

ightarrow Output of spatially correlated forecasts

Self-attention can be used to improve post-processing for Earth system models

- \rightarrow Extraction of additional information \rightarrow Reduced error
- \rightarrow Calibration of ensemble for improved uncertainty estimation

The ensemble transformer enables member-by-member post-processing with neural networks

→ Non-parametric processing of ensemble members without aggregated statistics

 \rightarrow Output of spatially correlated forecasts

Do you have questions?

If you have questions

Take a look into the paper (a longer one is in preparation):

Self-Attentive Ensemble Transformer: Representing Ensemble Interactions in Neural Networks for Earth System Models

Tobias Sebastian Finn¹²

<u>and/or</u> take a look into the official code: https://github.com/tobifinn/ensemble_transformer

> <u>and/or</u> write me an e-mail: tobias.finn@enpc.fr

<u>and/or</u> follow me on twitter: @tobias_finn