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Global post-processing case

ﬁ ERAS reanalysis

et .
2-metre-temperature

Global regression with
convolution neural networks

Geopotential Temperature
on 500 hPa on 850 hPa

IFS-EPS (50 members, lead time: 48 h)
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Ensemble transformer architecture
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Ensemble transformer architecture

Residual connection

\

nXx

Module

LayerNorm

— 1

1 x 1 Convolution
—— Embedding layers

— |dentity mapping

= Self-attention module

Embedding

| — “Synoptical” embedding learned by NN

1 -—

————

|FS-EPS

— 3x convolutions (filter: 5 x 5)
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Ensemble transformer architecture

Module / Eqg. (1)

n X Module

oV| Softmax/Eq.(2)
LayerNorm /’ ] l
1 ~ Walue Key  Query)
Embedding | i ..

1 x 1 Convolution
— Embedding layers
IFS-EPS — |dentity mapping
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PPNN Direct
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PPNN scales slightly with number of layers

RMSE (K) Spread (K)

|FS-EPS 112 0.73
Parametric approach PPNN (1) 0.95 0.87
(Rasp & Lerch, 20718) PPNN(5)|  0.93 0.87
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Direct approach without self-attention

has problems

RMSE (K) Spread (K)

|FS-EPS 1.12 0.73
Parametric approach PPNN (1) 0.95 0.87
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Apply NN to each w/o Self-Attention (1) 0.95 0.70
member independently w/o Self-Attention (5) 0.96 0.70
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Transformer has lowest error and

best spread-skill ratio

RMSE (K) Spread (K)

IFS-EPS 1.12 0.73

Parametric approach PPNN (1) 0.95 0.87
(Rasp & Lerch, 2018) PPNN (5) 0.93 0.87
Apply NN to each w/o Self-Attention (1) 0.95 0.70
member independently w/o Self-Attention (5) 0.96 0.70
Transformer (1) 0.91 0.91

Transformer (5) 0.90 0.90

Self-attention can extract additional information from ensemble data

+ helps to calibrate the ensemble
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Probability integral transform diagram

to check ensemble calibration
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Raw IFS ensemble clearly underdispersive

+ model bias
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PPNN calibrates the ensemble

1 IFS-EPS ]
| = PPNN

PIT
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PPNN and Transformer are

similarly good calibrated

[ IFS-EPS ]
| mmm PPNN
4 - Transformer

PIT
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Transformer can represent spatial correlations

Cold wave in North America —2019-01-26 12:00 UTC
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Transformer can represent spatial correlations

Cold wave in North America —2019-01-26 12:00 UTC
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If you have questions

Take a look into the paper (a longer one is in preparation):

Self-Attentive Ensemble Transformer: Representing Ensemble Interactions
in Neural Networks for Earth System Models

Tobias Sebastian Finn ! 2

and/or take a look into the official code:
https://github.com/tobifinn/ensemble_transformer

and/or write me an e-mail:
tobias.finn@enpc.fr

and/or follow me on twitter:
@tobias_finn

17.11.2021 14/13



